Skip to main content

Optimization Methods for Inventive Design

  • Chapter
  • First Online:
TRIZ – The Theory of Inventive Problem Solving

Abstract

The work presented in this chapter deals with problems of invention where solutions of optimization methods do not meet the objectives of problems to solve. The problems previously defined exploit, for their resolution, a problem extending the model of classical TRIZ in a canonical form called “generalized system of contradictions.” This research draws up a resolution process based on the simulation-optimization-invention loop using both solving methods of optimization and invention. More precisely, it models the extraction of generalized contractions from simulation data as combinatorial optimization problems and offers algorithms that provide all the solutions to these problems. In addition, it provides heuristics to select variables and their relevant values involved in generalized contradictions and/or useful for optimization. The contributions concern theory and practice of the inventive design. The work also explores cross-fertilization between optimization and TRIZ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altshuller GS (1985) Algorithm of inventive problem solving. http://www.evolocus.com/textbooks/ariz85c.pdf. Accessed 3 Feb 2016

  • Bonnardel N (2000) Understanding and supporting creativity in design. Knowl Based Syst 13:505–513

    Article  Google Scholar 

  • Brohm J-M (2003) Les principes de la dialectique. Editions de la Passion

    Google Scholar 

  • Cameron G (2015) ARIZ explored: a step-by-step guide to ARIZ the algorithm for solving inventive problems. Createspac, Charleston, SC

    Google Scholar 

  • Collette Y, Siarry P (2004) Multiobjective optimization: principles and case studies. Springer, New York

    Book  MATH  Google Scholar 

  • Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1:131–156

    Article  Google Scholar 

  • Doreian P (1999) An intuitive introduction to blockmodeling with examples. Bull Méthodol Soc 61:5–34. doi:10.1177/075910639906100103

    Article  Google Scholar 

  • Dubois S, Eltzer T, De Guio R (2009a) A dialectical based model coherent with inventive and optimization problems. Comput Ind 60:575–583. doi:10.1016/j.compind.2009.05.020

    Article  Google Scholar 

  • Dubois S, Rasovska I, De Guio R (2009b) Towards an automatic extraction of generalized system of contradictions out of solutionless design of experiments. In: 3nd IFIP working conference on computer aided innovation (CAI): growth and development of CAI, pp 70–79

    Google Scholar 

  • Dubois S, De Guio R, Rasovska I (2011) Different ways to identify generalized system of contradictions, a strategic meaning. Proc Eng 9:119–125. doi:10.1016/j.proeng.2011.03.105

    Article  Google Scholar 

  • Eltzer T, DeGuio R (2007) Constraint based modelling as a mean to link dialectical thinking and corporate data. application to the design of experiments. In: León-Rovira N (ed) Trends in computer aided innovation: second IFIP working conference on computer aided innovation, Michigan, USA, 8–9 October 2007. Springer, Boston, pp 145–155

    Google Scholar 

  • Gano DL (2001) Effective problem solving: a new way of thinking. In: Annual quality congress proceedings

    Google Scholar 

  • Guyon I (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  MATH  Google Scholar 

  • Jain A, Murty M, Flynn PJ, Rosenfeld A, Bowyer K, Ahuja N, Jain A (1999) Data clustering: a review. ACM Comput Surv 31:264–323

    Article  Google Scholar 

  • Khomenko N, De Guio R (2007) OTSM network of problems for representing and analysing problem situations with computer support. In: Trends in computer aided innovation. 2nd IFIP working conference on computer aided innovation. Technical Center Brighton, Springer, pp 77–88

    Google Scholar 

  • Lewis DD, Ringuette M (1994) A comparison of two learning algorithms for text categorization. Proc SDAIR 81–93

    Google Scholar 

  • Liiv I (2010) Seriation and matrix reordering methods: an historical overview. Stat Anal Data Min. doi:10.1002/sam.10071

  • Lin L (2016) Optimization methods for inventive design. PhD dissertation, University of Strasbourg

    Google Scholar 

  • Lin L, Rasovska I, De Guio R, Dubois S (2013) Algorithm for identifying generalized technical contradictions in experiments. J Eur Syst Autom 47(4–8):563–588. doi:10.3166/jesa.47.563-588

    Google Scholar 

  • Lin L, Dubois S, De Guio R, Rasovska I (2015) An exact algorithm to extract the generalized physical contradiction. Int J Interact Des Manuf 9:185–191

    Article  Google Scholar 

  • Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Kluwer Academic Publishers, New York

    Book  MATH  Google Scholar 

  • Rasovska I, Dubois S, De Guio R (2010) Study of different principles for automatic identification of generalized system of contradiction out of design of experiments. In: 8th international conference of modeling and simulation, Hammamet, Tunis

    Google Scholar 

  • Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517. doi:10.1093/bioinformatics/btm344

    Article  Google Scholar 

  • Sève L (1998) Nature, science, dialectique: un chantier à rouvrir. In: Sève L (ed) Sciences et dialectiques de la nature. Éditions L, pp 23–247

    Google Scholar 

  • Sève L, Guespin-Michel J (2005) Émergence, complexité et dialectique: sur les systèmes dynamiques non linéaires. Éditions, Paris

    Google Scholar 

  • Shlens J (2014) A tutorial on principal component analysis. Int J Remote Sens 51

    Google Scholar 

  • Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. Mach Learn Work Then Conf 412–420. doi:10.1093/bioinformatics/bth267

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Rasovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lin, L., Rasovska, I., De Guio, R., Dubois, S. (2017). Optimization Methods for Inventive Design. In: Cavallucci, D. (eds) TRIZ – The Theory of Inventive Problem Solving. Springer, Cham. https://doi.org/10.1007/978-3-319-56593-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56593-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56592-7

  • Online ISBN: 978-3-319-56593-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics