Skip to main content

The Electron Radiation Effect on Polyvinylchloride (PVC) Nanocomposites with Multiwalled Carbon Nanotubes

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Abstract

We demonstrated that polyene sequences in the form of faulty spots with conjugated double C=C linkages of various lengths are formed in polyvinylchloride (PVC) nanocomposite with multi-walled carbon nanotubes (MWCNTs) in the course of thermal/mechanical and chemical dehydrochlorination. Change in MWCNTs content (up to 2.0 wt.%) in such nanocomposites in combination with electron irradiation (E e = 1.8 MeV, dosage of 0.05 MGy) causes intermolecular cross-linking and destruction of the main chain and the aforesaid faulty spots, confirmed by changes in their Raman scattering spectra and photoluminescence as well as by complicated behaviour of Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samira M, Ahmed M, Nadia N, Mohamed S, Rachida Z (2013) Thermal and mechanical properties of PVC and PVC-HDPE blends. J Mater Sci 1:6–11

    Google Scholar 

  2. Shi J-H, Yang B-X, Pramoda KP, Goh SH (2007) Enhancement of the mechanical performance of poly(vinyl chloride) using poly(n-butyl methacrylate)-grafted multi-walled carbon nanotubes. Nanotechnology 18:375704

    Article  ADS  Google Scholar 

  3. Ye M, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M (2008) Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Comp Sci Technol 68:1981–1988

    Article  Google Scholar 

  4. O’Connor I, Hayden H, O’Connor S, Coleman JN, Gun’ko YK (2008) Kevlar coated carbon nanotubes for reinforcement of polyvilnylchloride. J Mater Chem 18:5585–5588

    Article  Google Scholar 

  5. Sterzyński T, Tomaszewska J, Piszczek K, Skórczewska K (2010) The influence of carbon nanotubes on PVC glass transition temperature. Comp Sci Technol 70:966–969

    Article  Google Scholar 

  6. Мatzui LY, Ovsienko IV, Len TA, Prylutskyy YI, Scharff P (2005) Transport properties of carbon nanotube-based composites. Fullerenes Nanotubes Carbon Nanostruct 13:259–265

    Google Scholar 

  7. Ovsienko IV, Len TA, Matzui LY, Prylutskyy YI, Ritter U, Scharff P, Le Normand F, Eklund P (2007) Resistance of nanocarbon material containing nanotubes. Mol Cryst Liq Cryst 468:289–297

    Article  Google Scholar 

  8. Burlaka A, Lukin S, Prylutska S, Remeniak O, Prylutskyy Y, Shuba M, Maksimenko S, Ritter U, Scharff P (2010) Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp Oncol 32:48–50

    Google Scholar 

  9. Li J, Pandey GP (2015) Advanced physical chemistry of carbon nanotubes. Annu Rev Phys Chem 66:331–356

    Article  ADS  Google Scholar 

  10. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  Google Scholar 

  11. Korolovych VF, Bulavin LA, Prylutskyy YI, Khrapatiy SV, Tsierkezos NG, Ritter U (2014) Influence of single-walled carbon nanotubes on thermal expansion of water. Int J Thermophys 35:19–31

    Article  ADS  Google Scholar 

  12. Adamenko I, Bulavin L, Korolovych V, Moroz K, Prylutskyy Y (2009) Thermophysical properties of carbon nanotubes in toluene under high pressure. J Mol Liq 150:1–3

    Google Scholar 

  13. Korolovych VF, Nedyak SP, Moroz KO, Prylutskyy YI, Scharff P, Ritter U (2013) Compressibility of water containing single-walled carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct 21:24–30

    Article  ADS  Google Scholar 

  14. Kim S, Polycarpou AA, Liang H (2013) Active control of surface forces via nanopore structure. APL Mater 1:032118

    Article  ADS  Google Scholar 

  15. Ritter U, Scharff P, Siegmund C, Dmytrenko OP, Kulish NP, Prylutskyy YI, Belyi NM, Gubanov VA, Komarova LA, Lizunova SV, Poroshin VG, Shlapatskaya VV, Bernas H (2006) Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 44:2694–2700

    Article  Google Scholar 

  16. Dmytrenko OP, Kulish NP, Belyi NM, Lizunova SV, Prylutskyy YI, Shlapatskaya VV, Strzhemechny YM, Ritter U, Scharff P (2009) Structure and vibrational properties of multi-walled carbon nanotubes irradiated with high-energy electrons. Fullerenes Nanotubes Carbon Nanostruct 17:123–134

    Article  ADS  Google Scholar 

  17. Bikulc̆ius G, Juodien T, Sŭkien V (1994) Investigation of wear of alloys based on gold. Surf Coatings Technol 64:149–154

    Article  Google Scholar 

  18. Ramesh S, Winil T, Arof AK (2010) Mechanical studies of poly(vinyl chloride)-poly(methyl methacrylate)-based polymer electrolytes. J Mater Sci 45:1280–1283

    Article  ADS  Google Scholar 

  19. Wu XL, Liu P (2010) Poly(vinyl chloride)-grafted multi-walled carbon nanotubes via Friedel-crafts alkylation. Polymer Lett 14:723–728

    Article  Google Scholar 

  20. Ritter U, Scharff P, Pinchuk TM, Dmytrenko OP, Bulavin LA, Kulish MP, Prylutskyy YI, Zabolotnyy MA, Grabovsky YE, Bilyy MM, Rugal AG, Shut AM, Shlapatska VV (2010) Radiation modification of polyvinyl chloride nanocomposites with multi-walled carbon nanotubes. Mat-wiss u Werkstofftech 41:675–681

    Article  Google Scholar 

  21. Ellahi S, Hester RE, Williams KPJ (1995) Waveguide resonance Raman spectroscopy of degraded PVC. Spectrochim Acta 51:549–553

    Article  Google Scholar 

  22. Blazevska-Gilev J, Kupčík J, Šubrt J, Bastl Z, Vorlíček V, Galíková A, Spaseska D, Pola J (2006) IR laser ablation of poly(vinyl chloride): formation of monomer and deposition of nanofibres of chlorinated polyhydrocarbon. Polymer Degrad Stab 91:213–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Pinchuk-Rugal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pinchuk-Rugal, T.M. et al. (2017). The Electron Radiation Effect on Polyvinylchloride (PVC) Nanocomposites with Multiwalled Carbon Nanotubes. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_58

Download citation

Publish with us

Policies and ethics