Skip to main content

The Applications and Challenges of Next-Generation Sequencing in Diagnosing Neuromuscular Disorders

  • Chapter
  • First Online:
Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders

Abstract

Inherited neuromuscular disorders (NMDs) form a group of highly heterogeneous diseases with a relatively high incidence of 1 in 3000. NMDs affect the peripheral nervous and muscular systems, resulting in gross motor disability. Disease subtype diagnosis is complicated by the high clinical and genetic heterogeneities of the disease and consequently more than 50% of the cases remain molecularly uncharacterized. Traditional gene-by-gene approach is quite exhaustive and after a few negative tests the quest for diagnosis is often given up without establishing diagnosis. However in the recent years, the clinical applications of next-generation sequencing (NGS)-based comprehensive approach such as multi-gene panels, and exome sequencing have allowed for rapid diagnosis. Additionally, its applications in research settings have allowed for identification of new disease-causing genes and variants which translated into an improved clinical diagnostic yield. Here, we discuss the application of NGS technology in NMDs as a diagnostic and research tool. We conclude that such an application will tremendously broaden our knowledge of NMDs; the outcome of which includes rapid and accurate diagnosis that would result in an earlier and more effective intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emery, A.E.: Population frequencies of inherited neuromuscular diseases – a world survey. Neuromuscul. Disord. NMD. 1, 19–29 (1991)

    Article  CAS  PubMed  Google Scholar 

  2. North, K.: What’s new in congenital myopathies? Neuromuscul. Disord. NMD. 18, 433–442 (2008). doi:10.1016/j.nmd.2008.04.002

    Article  PubMed  Google Scholar 

  3. Valencia, C.A., Ankala, A., Rhodenizer, D., et al.: Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel. PLoS One. 8, e53083 (2013). doi:10.1371/journal.pone.0053083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vasli, N., Böhm, J., Le Gras, S., et al.: Next generation sequencing for molecular diagnosis of neuromuscular diseases. Acta Neuropathol. (Berl). 124, 273–283 (2012). doi:10.1007/s00401-012-0982-8

    Article  CAS  Google Scholar 

  5. Flanigan, K.M.: The muscular dystrophies. Semin. Neurol. 32, 255–263 (2012). doi:10.1055/s-0032-1329199

    Article  PubMed  Google Scholar 

  6. Mercuri, E., Muntoni, F.: Muscular dystrophies. Lancet. 381, 845–860 (2013). doi:10.1016/S0140-6736(12)61897-2

    Article  CAS  PubMed  Google Scholar 

  7. Rocha, C.T., Hoffman, E.P.: Limb-girdle and congenital muscular dystrophies: current diagnostics, management, and emerging technologies. Curr. Neurol. Neurosci. Rep. 10, 267–276 (2010). doi:10.1007/s11910-010-0119-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mercuri, E., Muntoni, F.: The ever-expanding spectrum of congenital muscular dystrophies. Ann. Neurol. 72, 9–17 (2012). doi:10.1002/ana.23548

    Article  PubMed  Google Scholar 

  9. Saporta, A.S.D., Sottile, S.L., Miller, L.J., et al.: Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann. Neurol. 69, 22–33 (2011). doi:10.1002/ana.22166

    Article  PubMed  PubMed Central  Google Scholar 

  10. North, K.N., Wang, C.H., Clarke, N., et al.: Approach to the diagnosis of congenital myopathies. Neuromuscul. Disord. NMD. 24, 97–116 (2014). doi:10.1016/j.nmd.2013.11.003

    Article  PubMed  Google Scholar 

  11. Nance, J.R., Dowling, J.J., Gibbs, E.M., Bönnemann, C.G.: Congenital myopathies: an update. Curr. Neurol. Neurosci. Rep. 12, 165–174 (2012). doi:10.1007/s11910-012-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Richard, P., Charron, P., Carrier, L., et al.: Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 107, 2227–2232 (2003). doi:10.1161/01.CIR.0000066323.15244.54

    Article  PubMed  Google Scholar 

  13. Villard, E., Duboscq-Bidot, L., Charron, P., et al.: Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur. Heart J. 26, 794–803 (2005). doi:10.1093/eurheartj/ehi193

    Article  CAS  PubMed  Google Scholar 

  14. Meredith, C., Herrmann, R., Parry, C., et al.: Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause laing early-onset distal myopathy (MPD1). Am. J. Hum. Genet. 75, 703–708 (2004). doi:10.1086/424760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tajsharghi, H., Thornell, L.-E., Lindberg, C., et al.: Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann. Neurol. 54, 494–500 (2003). doi:10.1002/ana.10693

    Article  CAS  PubMed  Google Scholar 

  16. Tajsharghi, H., Oldfors, A., Macleod, D.P., Swash, M.: Homozygous mutation in MYH7 in myosin storage myopathy and cardiomyopathy. Neurology. 68, 962 (2007). doi:10.1212/01.wnl.0000257131.13438.2c

    Article  PubMed  Google Scholar 

  17. Muelas, N., Hackman, P., Luque, H., et al.: MYH7 gene tail mutation causing myopathic profiles beyond Laing distal myopathy. Neurology. 75, 732–741 (2010). doi:10.1212/WNL.0b013e3181eee4d5

    Article  CAS  PubMed  Google Scholar 

  18. Pegoraro, E., Gavassini, B.F., Borsato, C., et al.: MYH7 gene mutation in myosin storage myopathy and scapulo-peroneal myopathy. Neuromuscul. Disord. NMD. 17, 321–329 (2007). doi:10.1016/j.nmd.2007.01.010

    Article  PubMed  Google Scholar 

  19. Ortolano, S., Tarrío, R., Blanco-Arias, P., et al.: A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy. Neuromuscul. Disord. NMD. 21, 254–262 (2011). doi:10.1016/j.nmd.2010.12.011

    Article  PubMed  Google Scholar 

  20. Homayoun, H., Khavandgar, S., Hoover, J.M., et al.: Novel mutation in MYH7 gene associated with distal myopathy and cardiomyopathy. Neuromuscul. Disord. NMD. 21, 219–222 (2011). doi:10.1016/j.nmd.2010.12.005

    Article  PubMed  Google Scholar 

  21. Gazzerro, E., Bonetto, A., Minetti, C.: Caveolinopathies: translational implications of caveolin-3 in skeletal and cardiac muscle disorders. Handb. Clin. Neurol. 101, 135–142 (2011). doi:10.1016/B978-0-08-045031-5.00010-4

    Article  CAS  PubMed  Google Scholar 

  22. Fee, D.B., So, Y.T., Barraza, C., et al.: Phenotypic variability associated with Arg26Gln mutation in caveolin3. Muscle Nerve. 30, 375–378 (2004). doi:10.1002/mus.20092

    Article  CAS  PubMed  Google Scholar 

  23. Rosen, D.R., Siddique, T., Patterson, D., et al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362, 59–62 (1993). doi:10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y.-Z., Bennett, C.L., Huynh, H.M., et al.: DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 74, 1128–1135 (2004). doi:10.1086/421054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hadano, S., Hand, C.K., Osuga, H., et al.: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 166–173 (2001). doi:10.1038/ng1001-166

    Article  CAS  PubMed  Google Scholar 

  26. Yang, Y., Hentati, A., Deng, H.X., et al.: The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet. 29, 160–165 (2001). doi:10.1038/ng1001-160

    Article  CAS  PubMed  Google Scholar 

  27. Gitcho, M.A., Bigio, E.H., Mishra, M., et al.: TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol. (Berl). 118, 633–645 (2009). doi:10.1007/s00401-009-0571-7

    Article  CAS  Google Scholar 

  28. Kwiatkowski, T.J., Bosco, D.A., Leclerc, A.L., et al.: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 323, 1205–1208 (2009). doi:10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  29. Greenway, M.J., Alexander, M.D., Ennis, S., et al.: A novel candidate region for ALS on chromosome 14q11.2. Neurology. 63, 1936–1938 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Hayward, C., Colville, S., Swingler, R.J., Brock, D.J.: Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis. Neurology. 52, 1899–1901 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., et al.: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF7 auses chromosome 9p-linked FTD and ALS. Neuron. 72, 245–256 (2011). doi:10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Renton, A.E., Majounie, E., Waite, A., et al.: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 72, 257–268 (2011). doi:10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lo, H.P., Cooper, S.T., Evesson, F.J., et al.: Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul. Disord. NMD. 18, 34–44 (2008). doi:10.1016/j.nmd.2007.08.009

    Article  PubMed  Google Scholar 

  34. Peat, R.A., Smith, J.M., Compton, A.G., et al.: Diagnosis and etiology of congenital muscular dystrophy. Neurology. 71, 312–321 (2008). doi:10.1212/01.wnl.0000284605.27654.5a

    Article  CAS  PubMed  Google Scholar 

  35. Chae, J.H., Vasta, V., Cho, A., et al.: Utility of next generation sequencing in genetic diagnosis of early onset neuromuscular disorders. J. Med. Genet. 52, 208–216 (2015). doi:10.1136/jmedgenet-2014-102819

    Article  CAS  PubMed  Google Scholar 

  36. Jungbluth, H., Sewry, C.A., Counsell, S., et al.: Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul. Disord. NMD. 14, 779–784 (2004). doi:10.1016/j.nmd.2004.08.005

    Article  PubMed  Google Scholar 

  37. Mercuri, E., Jungbluth, H., Muntoni, F.: Muscle imaging in clinical practice: diagnostic value of muscle magnetic resonance imaging in inherited neuromuscular disorders. Curr. Opin. Neurol. 18, 526–537 (2005)

    Article  PubMed  Google Scholar 

  38. Fischer, D., Kley, R.A., Strach, K., et al.: Distinct muscle imaging patterns in myofibrillar myopathies. Neurology. 71, 758–765 (2008). doi:10.1212/01.wnl.0000324927.28817.9b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Klein, A., Jungbluth, H., Clement, E., et al.: Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch. Neurol. 68, 1171–1179 (2011). doi:10.1001/archneurol.2011.188

    Article  PubMed  Google Scholar 

  40. Ghaoui, R., Clarke, N., Hollingworth, P., Needham, M.: Muscle disorders: the latest investigations. Intern. Med. J. 43, 970–978 (2013). doi:10.1111/imj.12234

    Article  CAS  PubMed  Google Scholar 

  41. Bornemann, A., Petersen, M.B., Schmalbruch, H.: Fatal congenital myopathy with actin filament deposits. Acta Neuropathol. (Berl). 92, 104–108 (1996)

    Article  CAS  Google Scholar 

  42. Laing, N.G., Wallgren-Pettersson, C.: 161st ENMC international workshop on nemaline myopathy and related disorders, Newcastle upon Tyne, 2008. Neuromuscul. Disord. NMD. 19, 300–305 (2009). doi:10.1016/j.nmd.2009.02.002

    Article  PubMed  Google Scholar 

  43. Nowak, K.J., Wattanasirichaigoon, D., Goebel, H.H., et al.: Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 23, 208–212 (1999). doi:10.1038/13837

    Article  CAS  PubMed  Google Scholar 

  44. Goebel, H.H., Piirsoo, A., Warlo, I., et al.: Infantile intranuclear rod myopathy. J. Child Neurol. 12, 22–30 (1997)

    Article  CAS  PubMed  Google Scholar 

  45. Sewry, C.A., Holton, J.L., Dick, D.J., et al.: Zebra body myopathy is caused by a mutation in the skeletal muscle actin gene (ACTA1). Neuromuscul. Disord. NMD. (2015). doi:10.1016/j.nmd.2015.02.003

    Google Scholar 

  46. Laing, N.G., Clarke, N.F., Dye, D.E., et al.: Actin mutations are one cause of congenital fibre type disproportion. Ann. Neurol. 56, 689–694 (2004). doi:10.1002/ana.20260

    Article  CAS  PubMed  Google Scholar 

  47. Hung, R.M., Yoon, G., Hawkins, C.E., et al.: Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscul. Disord. NMD. 20, 238–240 (2010). doi:10.1016/j.nmd.2010.01.011

    Article  PubMed  Google Scholar 

  48. Zvaritch, E., Kraeva, N., Bombardier, E., et al.: Ca2+ dysregulation in Ryr1(I4895T/wt) mice causes congenital myopathy with progressive formation of minicores, cores, and nemaline rods. Proc. Natl. Acad. Sci. U. S. A. 106, 21813–21818 (2009). doi:10.1073/pnas.0912126106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tennyson, C.N., Klamut, H.J., Worton, R.G.: The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9, 184–190 (1995). doi:10.1038/ng0295-184

    Article  CAS  PubMed  Google Scholar 

  50. Hackman, P., Vihola, A., Haravuori, H., et al.: Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500 (2002). doi:10.1086/342380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Donner, K., Sandbacka, M., Lehtokari, V.-L., et al.: Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts. Eur. J. Hum. Genet. EJHG. 12, 744–751 (2004). doi:10.1038/sj.ejhg.5201242

    Article  CAS  PubMed  Google Scholar 

  52. Phillips, M.S., Fujii, J., Khanna, V.K., et al.: The structural organization of the human skeletal muscle ryanodine receptor (RYR1) gene. Genomics. 34, 24–41 (1996). doi:10.1006/geno.1996.0238

    Article  CAS  PubMed  Google Scholar 

  53. Abbs, S., Bobrow, M.: Analysis of quantitative PCR for the diagnosis of deletion and duplication carriers in the dystrophin gene. J. Med. Genet. 29, 191–196 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muntoni, F., Torelli, S., Ferlini, A.: Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2, 731–740 (2003)

    Article  CAS  PubMed  Google Scholar 

  55. Schouten, J.P., McElgunn, C.J., Waaijer, R., et al.: Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  56. van der Steege, G., Grootscholten, P.M., van der Vlies, P., et al.: PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet. 345, 985–986 (1995)

    Article  CAS  PubMed  Google Scholar 

  57. Lemmers, R.J.F.L., Wohlgemuth, M., Frants, R.R., et al.: Contractions of D4Z4 on 4qB subtelomeres do not cause facioscapulohumeral muscular dystrophy. Am. J. Hum. Genet. 75, 1124–1130 (2004). doi:10.1086/426035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Warner, J.P., Barron, L.H., Goudie, D., et al.: A general method for the detection of large CAG repeat expansions by fluorescent PCR. J. Med. Genet. 33, 1022–1026 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Radvansky, J., Ficek, A., Kadasi, L.: Repeat-primed polymerase chain reaction in myotonic dystrophy type 2 testing. Genet. Test. Mol. Biomarkers. 15, 133–136 (2011). doi:10.1089/gtmb.2010.0127

    Article  CAS  PubMed  Google Scholar 

  60. Catalli, C., Morgante, A., Iraci, R., et al.: Validation of sensitivity and specificity of tetraplet-primed PCR (TP-PCR) in the molecular diagnosis of myotonic dystrophy type 2 (DM2). J. Mol. Diagn. JMD. 12, 601–606 (2010). doi:10.2353/jmoldx.2010.090239

    Article  CAS  PubMed  Google Scholar 

  61. Mardis, E.R.: The impact of next-generation sequencing technology on genetics. Trends Genet. TIG. 24, 133–141 (2008). doi:10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  62. Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008). doi:10.1038/nbt1486

    Article  CAS  PubMed  Google Scholar 

  63. Voelkerding, K.V., Dames, S.A., Durtschi, J.D.: Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55, 641–658 (2009). doi:10.1373/clinchem.2008.112789

    Article  CAS  PubMed  Google Scholar 

  64. Albert, T.J., Molla, M.N., Muzny, D.M., et al.: Direct selection of human genomic loci by microarray hybridization. Nat. Methods. 4, 903–905 (2007). doi:10.1038/nmeth1111

    Article  CAS  PubMed  Google Scholar 

  65. Hodges, E., Xuan, Z., Balija, V., et al.: Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2007). doi:10.1038/ng.2007.42

    Article  CAS  PubMed  Google Scholar 

  66. Okou, D.T., Steinberg, K.M., Middle, C., et al.: Microarray-based genomic selection for high-throughput resequencing. Nat. Methods. 4, 907–909 (2007). doi:10.1038/nmeth1109

    Article  CAS  PubMed  Google Scholar 

  67. Porreca, G.J., Zhang, K., Li, J.B., et al.: Multiplex amplification of large sets of human exons. Nat. Methods. 4, 931–936 (2007). doi:10.1038/nmeth1110

    Article  CAS  PubMed  Google Scholar 

  68. Ding, L., Getz, G., Wheeler, D.A., et al.: Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 455, 1069–1075 (2008). doi:10.1038/nature07423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, P.M., Lam, H.Y.K., Urban, A.E., et al.: Analysis of copy number variants and segmental duplications in the human genome: evidence for a change in the process of formation in recent evolutionary history. Genome Res. 18, 1865–1874 (2008). doi:10.1101/gr.081422.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tewhey, R., Warner, J.B., Nakano, M., et al.: Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol. 27, 1025–1031 (2009). doi:10.1038/nbt.1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eid, J., Fehr, A., Gray, J., et al.: Real-time DNA sequencing from single polymerase molecules. Science. 323, 133–138 (2009). doi:10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  72. Borgström, E., Lundin, S., Lundeberg, J.: Large scale library generation for high throughput sequencing. PLoS One. 6, e19119 (2011). doi:10.1371/journal.pone.0019119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Margulies, M., Egholm, M., Altman, W.E., et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature. 437, 376–380 (2005). doi:10.1038/nature03959

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ruparel, H., Bi, L., Li, Z., et al.: Design and synthesis of a 3′-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis. Proc. Natl. Acad. Sci. U. S. A. 102, 5932–5937 (2005). doi:10.1073/pnas.0501962102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rothberg, J.M., Hinz, W., Rearick, T.M., et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature. 475, 348–352 (2011). doi:10.1038/nature10242

    Article  CAS  PubMed  Google Scholar 

  76. Clark, M.J., Chen, R., Lam, H.Y.K., et al.: Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol. 29, 908–914 (2011). doi:10.1038/nbt.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, X., Tang, W., Ahmad, S., et al.: Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities. Hear. Res. 288, 67–76 (2012). doi:10.1016/j.heares.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  78. Xie, S., Lan, Z., Qu, N., et al.: Detection of truncated dystrophin lacking the C-terminal domain in a Chinese pedigree by next-generation sequencing. Gene. 499, 139–142 (2012). doi:10.1016/j.gene.2012.03.029

    Article  CAS  PubMed  Google Scholar 

  79. Lim, B.C., Lee, S., Shin, J.-Y., et al.: Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform. J. Med. Genet. 48, 731–736 (2011). doi:10.1136/jmedgenet-2011-100133

    Article  CAS  PubMed  Google Scholar 

  80. Tian, X., Liang, W.-C., Feng, Y., et al.: Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS. Neurol. Genet. 1, e14 (2015). doi:10.1212/NXG.0000000000000015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bennett, R.R., den Dunnen, J., O’Brien, K.F., et al.: Detection of mutations in the dystrophin gene via automated DHPLC screening and direct sequencing. BMC Genet. 2, 17 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Flanigan, K.M., von Niederhausern, A., Dunn, D.M., et al.: Rapid direct sequence analysis of the dystrophin gene. Am. J. Hum. Genet. 72, 931–939 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lalic, T., Vossen, R.H.A.M., Coffa, J., et al.: Deletion and duplication screening in the DMD gene using MLPA. Eur. J. Hum. Genet. EJHG. 13, 1231–1234 (2005). doi:10.1038/sj.ejhg.5201465

    Article  CAS  PubMed  Google Scholar 

  84. Mendell, J.R., Buzin, C.H., Feng, J., et al.: Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology. 57, 645–650 (2001)

    Article  CAS  PubMed  Google Scholar 

  85. Prior, T.W., Bridgeman, S.J.: Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J. Mol. Diagn. JMD. 7, 317–326 (2005). doi:10.1016/S1525-1578(10)60560-0

    Article  CAS  PubMed  Google Scholar 

  86. Iglesias, A., Anyane-Yeboa, K., Wynn, J., et al.: The usefulness of whole-exome sequencing in routine clinical practice. Genet. Med. Off. J. Am. Coll. Med. Genet. 16, 922–931 (2014). doi:10.1038/gim.2014.58

    Google Scholar 

  87. Yang, Y., Muzny, D.M., Reid, J.G., et al.: Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 369, 1502–1511 (2013). doi:10.1056/NEJMoa1306555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stevens, E., Carss, K.J., Cirak, S., et al.: Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 92, 354–365 (2013). doi:10.1016/j.ajhg.2013.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ceyhan-Birsoy, O., Talim, B., Swanson, L.C., et al.: Whole exome sequencing reveals DYSF, FKTN, and ISPD mutations in congenital muscular dystrophy without brain or eye involvement. J. Neuromuscul. Dis. 2, 87–92 (2015). doi:10.3233/JND-140038

    PubMed  PubMed Central  Google Scholar 

  90. Park, H.J., Choi, Y.C., Kim, S.M., et al.: Molecular genetic diagnosis of a Bethlem myopathy family with an autosomal-dominant COL6A1 mutation, as evidenced by exome sequencing. J. Clin. Neurol. Seoul Korea. 11, 183–187 (2015). doi:10.3988/jcn.2015.11.2.183

    Article  Google Scholar 

  91. Bögershausen, N., Shahrzad, N., Chong, J.X., et al.: Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability. Am. J. Hum. Genet. 93, 181–190 (2013). doi:10.1016/j.ajhg.2013.05.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. McDonald, K.K., Stajich, J., Blach, C., et al.: Exome analysis of two limb-girdle muscular dystrophy families: mutations identified and challenges encountered. PLoS One. 7, e48864 (2012). doi:10.1371/journal.pone.0048864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Harms, M.B., Sommerville, R.B., Allred, P., et al.: Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann. Neurol. 71, 407–416 (2012). doi:10.1002/ana.22683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Torella, A., Fanin, M., Mutarelli, M., et al.: Next-generation sequencing identifies transportin 3 as the causative gene for LGMD1F. PLoS One. 8, e63536 (2013). doi:10.1371/journal.pone.0063536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carss, K.J., Stevens, E., Foley, A.R., et al.: Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 93, 29–41 (2013). doi:10.1016/j.ajhg.2013.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. von Renesse, A., Petkova, M.V., Lützkendorf, S., et al.: POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J. Med. Genet. 51, 275–282 (2014). doi:10.1136/jmedgenet-2013-102236

    Article  CAS  Google Scholar 

  97. Couthouis, J., Raphael, A.R., Siskind, C., et al.: Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy. Neuromuscul. Disord. NMD. 24, 431–435 (2014). doi:10.1016/j.nmd.2014.01.014

    Article  PubMed  Google Scholar 

  98. Jimenez-Escrig, A., Gobernado, I., Garcia-Villanueva, M., Sanchez-Herranz, A.: Autosomal recessive Emery-Dreifuss muscular dystrophy caused by a novel mutation (R225Q) in the Lamin A/C gene identified by exome sequencing. Muscle Nerve. 45, 605–610 (2012). doi:10.1002/mus.22324

    Article  CAS  PubMed  Google Scholar 

  99. Mitsuhashi, S., Boyden, S.E., Estrella, E.A., et al.: Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2. Neuromuscul. Disord. NMD. 23, 975–980 (2013). doi:10.1016/j.nmd.2013.08.009

    Article  PubMed  Google Scholar 

  100. Manzini, M.C., Tambunan, D.E., Hill, R.S., et al.: Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am. J. Hum. Genet. 91, 541–547 (2012). doi:10.1016/j.ajhg.2012.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dias, C., Sincan, M., Cherukuri, P.F., et al.: An analysis of exome sequencing for diagnostic testing of the genes associated with muscle disease and spastic paraplegia. Hum. Mutat. 33, 614–626 (2012). doi:10.1002/humu.22032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oliveira, J., Negrão, L., Fineza, I., et al.: New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J. Hum. Genet. (2015). doi:10.1038/jhg.2015.20

    Google Scholar 

  103. Shaheen, R., Faqeih, E., Ansari, S., Alkuraya, F.S.: A truncating mutation in B3GNT1 causes severe Walker-Warburg syndrome. Neurogenetics. 14, 243–245 (2013). doi:10.1007/s10048-013-0367-8

    Article  CAS  PubMed  Google Scholar 

  104. Klar, J., Sobol, M., Melberg, A., et al.: Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum. Mutat. 34, 572–577 (2013). doi:10.1002/humu.22282

    CAS  PubMed  Google Scholar 

  105. Davies, K.E., Nowak, K.J.: Molecular mechanisms of muscular dystrophies: old and new players. Nat. Rev. Mol. Cell Biol. 7, 762–773 (2006). doi:10.1038/nrm2024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Alexander Valencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, L. et al. (2017). The Applications and Challenges of Next-Generation Sequencing in Diagnosing Neuromuscular Disorders. In: Wong, LJ. (eds) Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-56418-0_10

Download citation

Publish with us

Policies and ethics