Skip to main content

Friction Stir Welding—An Overview

  • Chapter
  • First Online:
Advanced Manufacturing Technologies

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

  • 2917 Accesses

Abstract

Friction stir welding is generally recognized as a solid state welding process and developed to overcome the difficulties of joining of aluminium alloys. Later, this process has been adapted to join copper, steel, dissimilar metals, magnesium, composites , etc. This concept can be further used in friction stir processing of metals, production of micro composites and coating of coppers on steel. This chapter elucidates the concept of friction stir welding process, material flow pattern, evolution of microstructure at weld region, and effect of process parameters on mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1995) Friction stir butt welding, Int Patent App PCT/GB92/02203 and GB Patent App. 9125978.8, Dec. 1991. U.S. Patent No. 5,460,317

    Google Scholar 

  2. Buffa G, Donati L, Fratini L, Tomesani L (2006) Solid state bonding in extrusion and FSW: process mechanics and analogies. J Mater Process Technol 177:344–347

    Article  Google Scholar 

  3. Li Ying, Murr LE, Mcclure JC (1999) Solid-state flow visualization in the friction-stir welding of 2024 Al To 6061 Al. Scripta Mater 40(9):1041–1046

    Article  Google Scholar 

  4. Colligan K (1999) material flow behavior during friction stir welding of aluminum. Weld J 75(7):229s–237s

    Google Scholar 

  5. Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 Friction-stir welds using a marker insert technique. Metall Mater Sci A 32(11):2879–2884

    Article  Google Scholar 

  6. Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC (2003) Flow patterns during friction stir welding. Mater Charact 49:95–101

    Article  Google Scholar 

  7. Hamilton C, Dymek S, Blicharski M (2008) A model of material flow during friction stir welding. Mater Charact 59(9):1206–1214

    Article  Google Scholar 

  8. Kumar K, Kailas Satish V, Srivatsan TS (2008) Influence of tool geometry in friction stir welding. Mater Manuf Process 23(2):188–194

    Article  Google Scholar 

  9. Arbegast W (2003) Modeling friction stir joining as a metal working process. Hot deformation of aluminum alloys III, TMS, San Diego, CA, pp 313–327

    Google Scholar 

  10. Mishra RS, Ma ZY (2005) Friction stir welding and processing Mater Sci Eng R 50:1–78

    Article  Google Scholar 

  11. Threadgill P (1997) Friction stir welding in aluminium alloys—preliminary microstructural assessment, TWI Bulletin, 30–33

    Google Scholar 

  12. DebRoy T, De A, Bhadeshia HKDH, Manvatkar VD, Arora A (2012) Tool durability maps for friction stir welding of an aluminum alloy. Proc R Soc Lond A 468(5):3552–3570

    Article  Google Scholar 

  13. Chen CM, Kovacevic R (2004) Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. Int J Mach Tool Manuf 44:1205–1214

    Article  Google Scholar 

  14. Zeng WM, Wu HL, Zhang J (2006) Effect of tool wear on microstructure, mechanical l alloy stir welded 6061 A. Acta Metall Sin 19(1):9–19

    Article  Google Scholar 

  15. Padmanaban G, Balasubramanian V (2009) Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy—An experimental approach. Mater Des 30(7):2647–2656

    Article  Google Scholar 

  16. Prado RA, Murr LE, Soto KF, McClure JC (2003) Self-optimization in tool wear for friction-stir welding of Al 6061_/20% Al2O3 MMC. Mater Sci Eng A 349:156–165

    Article  Google Scholar 

  17. Shindo DJ, Rivera AR, Murr LE (2006) Shape optimization for tool wear in the friction-stir welding of cast AI359-20% SiC MMC. J Mater Sci 37:4999–5005

    Article  Google Scholar 

  18. Fernandez GJ, Murr LE (2004) Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359 + 20% SiC metal-matrix composite. Mater Charact 52:65–75

    Article  Google Scholar 

  19. Lorrain O, Favier V, Zahrouni H, Lawrjaniec D (2010) Understanding the material flow path of friction stir welding process using unthreaded tools. J Mater Process Tech 210:603–609

    Article  Google Scholar 

  20. Shettigar AK, Salian G, Herbert M, Rao S (2013) Microstructural characterization and hardness evaluation of friction stir welded composite AA6061-4 . 5Cu-5SiC (Wt .%), 63(4): 429–434

    Google Scholar 

  21. Mehta M, Arora A, Debroy T (2011) Tool geometry for friction stir welding optimum shoulder diameter. Metall Mater Trans A 42(A): 2716–2722

    Google Scholar 

  22. Vilaça P, Pepe N, Quintino L (2006) Metallurgical and Corrosion Features of Friction Stir Welding of AA5083-H111. Tech Uni Lisbon, Portugal, pp 1–13

    Google Scholar 

  23. Venkateswarlu D, Mandal Nr (2013) Tool design effects for FSW of AA7039. Weld J 92:41s–47s

    Google Scholar 

  24. Thomas WM, Staines DG, Norris IM, de Frias R (2003) friction stir welding tools and developments. Weld World 47(11–12):10–17

    Article  Google Scholar 

  25. Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J Mater Process Techno 200(1–3):163–175

    Article  Google Scholar 

  26. Rajakumar S, Balasubramanian V (2012) Correlation between weld nugget grain size, weld nugget hardness and tensile strength of friction stir welded commercial grade aluminium alloy joints. Mater Des 34:242–251

    Article  Google Scholar 

  27. Thomas WM, Johnson KI, Wiesner CS (2003) Friction stir welding–recent developments in tool and process technologies. Adv Eng Mater 5(7):485–490

    Google Scholar 

  28. Vijay SJ, Murugan N (2010) Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10 wt.% TiB2 metal matrix composite. Mate Des 31:3585–3589

    Article  Google Scholar 

  29. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminum alloy joints. Mater Des 32:535–549

    Article  Google Scholar 

  30. Dong P, Li H, Sun D, Gong W, Liu J (2013) Effect of welding speed on the microstructure and hardness in frictio stir welding joints of 6005A-T6 aluminum alloy. Mater Des 45:524–531

    Article  Google Scholar 

  31. Amirizad M, Kokabi AH, AbbasiGharacheh M, Sarrafi R, Shalchi B, Azizieh M (2006) Evaluation of microstructure and mechanical properties in friction stir welded A356 + 15%SiCp cast composite. Mater Lett 60(4):565–568

    Article  Google Scholar 

  32. Kumar A, Nayak CV, Herbert MA, Rao SS (2014) Microstructure and hardness of friction stir welded aluminium—copper matrix-based composite reinforced with 10 wt- % SiCp. 18:84–89

    Google Scholar 

  33. Uzun H (2007) Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite. Mater Des 28:1440–1446

    Article  Google Scholar 

  34. Ceschini L, Boromei I, Minak G, Morri A, Tarterini F (2007) Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite. Compo Sci Technol 67:605–615

    Article  Google Scholar 

  35. Feng AH, Xiao BL, Ma ZY (2008) Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite. Compos Sci Technol 68:2141–2148

    Article  Google Scholar 

  36. Chen X, Silva M, Gougeon P, St-georges L (2009) Microstructure and mechanical properties of friction stir welded AA6063—B4C metal matrix composites. Mater Sci Engg A 518:174–184

    Article  Google Scholar 

  37. Nami H, Adgi H, Sharifitabar M, Shamabadi H (2011) Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite. Mater Des 32:976–983

    Article  Google Scholar 

  38. Ni DR, Chen DL, Wang D, Xiao BL, Ma ZY (2013) Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet. Mater Des 51:199–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Shettigar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shettigar, A.K., Manjaiah, M. (2017). Friction Stir Welding—An Overview. In: Gupta, K. (eds) Advanced Manufacturing Technologies. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-56099-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56099-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56098-4

  • Online ISBN: 978-3-319-56099-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics