Skip to main content

Non-infectious Diseases of the Oral Mucosa: The Importance of Immune Functions

  • Chapter
  • First Online:
Oral Mucosa in Health and Disease

Abstract

Introduction: The non-microbial diseases of the oral mucosa constitute a heterogenous group of disorders from rare life-threatening autoimmune disorders such as Pemphigus vulgaris to more common conditions like recurrent aphthous stomatitis (RAS). However, they have some features in common; a genetic susceptibility or association in some; and immune dysregulation or immune-driven pathology in many. In this chapter, the diseases are briefly described in terms of any genetic susceptibility/association, and the contribution of the immune response to pathology. Many of the diseases are managed by using immunosuppressive drugs which also include specific monoclonal antibodies, the so-called biologics. The mode of action of some of the drugs most commonly used is outlined in Table 11.1. An extensive description of diagnostic criteria and detailed clinical management is beyond the scope of this chapter but is referenced in a literature review of current clinical management of oral mucosal disease in Chap. 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Challacombe SJ, Shirlaw PJ. Oral ulceration: when to treat, refer or ignore. Dental Update. 1991;18(9):368–73.

    PubMed  Google Scholar 

  2. Tappuni AR, Kovacevic T, Shirlaw PJ, Challacombe SJ. Clinical assessment of disease severity in recurrent aphthous stomatitis. J Oral Pathol Med. 2013;42(8):635–41.

    Article  PubMed  Google Scholar 

  3. Jurge S, Kuffer R, Scully C, Porter SR. Mucosal disease series. Number VI. Recurrent aphthous stomatitis. Oral Dis. 2006;12(1):1–21.

    Article  PubMed  Google Scholar 

  4. Challacombe SJ, Barkhan P, Lehner T. Haematological features and differentiation of recurrent oral ulceration. The British Journal of Oral Surgery. 1977a;15(1):37–48.

    Article  PubMed  Google Scholar 

  5. Challacombe SJ, Batchelor JR, Kennedy LA, Lehner T. HLA antigens in recurrent oral ulceration. Arch Dermatol. 1977b;113(12):1717–9.

    Article  PubMed  Google Scholar 

  6. Lehner T. Immunological aspects of recurrent oral ulceration and Behcet’s syndrome. Journal of Oral Pathology. 1978;7(6):424–30.

    Article  PubMed  Google Scholar 

  7. Thomas DW, Bagg J, Walker DM. Characterisation of the effector cells responsible for the in vitro cytotoxicity of blood leucocytes from aphthous ulcer patients for oral epithelial cells. Gut. 1990;31(3):294–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sun A, Chu CT, Wu YC, Yuan JH. Mechanisms of depressed natural killer cell activity in recurrent aphthous ulcers. Clin Immunol Immunopathol. 1991;60(1):83–92.

    Article  PubMed  Google Scholar 

  9. Pedersen A, Hornsleth A. Recurrent aphthous ulceration: a possible clinical manifestation of reactivation of varicella zoster or cytomegalovirus infection. J Oral Pathol Med. 1993;22(2):64–8.

    Article  PubMed  Google Scholar 

  10. Hasan A, Childerstone A, Pervin K, Shinnick T, Mizushima Y, Van der Zee R, Vaughan R, Lehner T. Recognition of a unique peptide epitope of the mycobacterial and human heat shock protein 65-60 antigen by T cells of patients with recurrent oral ulcers. Clin Exp Immunol. 1995;99(3):392–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hasan A, Shinnick T, Mizushima Y, van der Zee R, Lehner T. Defining a T-cell epitope within HSP 65 in recurrent aphthous stomatitis. Clin Exp Immunol. 2002;128(2):318–25.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hasan A, Sadoh D, Palmer R, Foo M, Marber M, Lehner T. The immune responses to human and microbial heat shock proteins in periodontal disease with and without coronary heart disease. Clin Exp Immunol. 2005;142(3):585–94.

    PubMed  PubMed Central  Google Scholar 

  13. Hijazi K, Lowe T, Meharg C, Berry SH, Foley J, Hold GL. Mucosal microbiome in patients with recurrent aphthous stomatitis. J Dent Res. 2015;94(3 Suppl):87s–94s.

    Article  PubMed  PubMed Central  Google Scholar 

  14. International Study Group for Behcet’s Disease. Criteria for diagnosis of Behcet's disease. Lancet. 1990;335(8697):1078–80.

    Google Scholar 

  15. Davatchi F, Assaad-Khalil S, Calamia KT, Crook JE, Sadeghi-Abdollahi B, Schirmer M, Tzellos T, Zouboulis CC, Akhlagi M, Al-Dalaan A, Alekberova ZS, Ali AA, Altenburg A, Arromdee E, Baltaci M, Bastos M, Benamour S, Ghorbel I, Boyvat A, Carvalho L, Chen W, Ben-Chetrit E, Chams-Davatchi C, Correia J, Crespo J, Dias C, Dong Y, Paixao-Duarte F, Elmuntaser K, Elonakov AV, Grana Gil J, Haghdoost AA, Hayani RM, Houman H, Isayeva AR, Jamshidi AR, Kaklamanis P, Kumar A, Kyrgidis A, Madanat W, Nadji A, Namba K, Ohno S, Olivieri I, Vaz Patto J, Pipitone N, de Queiroz MV, Ramos F, Resende C, Rosa CM, Salvarani C, Serra MJ, Shahram F, Shams H, Sharquie KE, Sliti-Khanfir M, Tribolet de Abreu T, Vasconcelos C, Vedes J, Wechsler B, Cheng YK, Zhang Z, Ziaei N. The International criteria for Behcet’s disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol. 2014;28(3):338–47.

    Article  Google Scholar 

  16. Senusi A, Seoudi N, Bergmeier LA, Fortune F. Genital ulcer severity score and genital health quality of life in Behçet’s disease. Orphanet Journal of Rare Diseases. 2015;10:117.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Verity DH, Marr JE, Ohno S, Wallace GR, Stanford MR. Behcet’s disease, the Silk Road and HLA-B51: historical and geographical perspectives. Tissue Antigens. 1999;54(3):213–20.

    Article  PubMed  Google Scholar 

  18. Lehner T. Immunopathogenesis of Behcet’s disease. Ann Med Interne (Paris). 1999;150(6):483–7.

    Google Scholar 

  19. Lehner T, Stanford MR, Phipps PA, Sun JB, Xiao BG, Holmgren J, Shinnick T, Hasan A, Mizushima Y. Immunopathogenesis and prevention of uveitis with the Behcet’s disease-specific peptide linked to cholera toxin B. Adv Exp Med Biol. 2003;528:173–80.

    Article  PubMed  Google Scholar 

  20. Takeuchi M, Kastner DL, Remmers EF. The immunogenetics of Behçet’s disease: a comprehensive review. J Autoimmun. 2015;64:137–48.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deuter CM, Kotter I, Wallace GR, Murray PI, Stubiger N, Zierhut M. Behcet’s disease: ocular effects and treatment. Prog Retin Eye Res. 2008;27(1):111–36.

    Article  PubMed  Google Scholar 

  22. Marshall SE. Behcet’s disease. Best Pract Res Clin Rheumatol. 2004;18(3):291–311.

    Article  PubMed  Google Scholar 

  23. Jenkins MK, Chen CA, Jung G, Mueller DL, Schwartz RH. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol. 1990;144(1):16–22.

    PubMed  Google Scholar 

  24. Kaya TI. Genetics of Behcet’s disease. Pathol Res Int. 2012;2012:912589.

    Article  Google Scholar 

  25. Pineton de Chambrun M, Wechsler B, Geri G, Cacoub P, Saadoun D. New insights into the pathogenesis of Behcet’s disease. Autoimmun Rev. 2012a;11(10):687–98.

    Article  PubMed  Google Scholar 

  26. Kirino Y, Bertsias G, Ishigatsubo Y, Mizuki N, Tugal-Tutkun I, Seyahi E, Ozyazgan Y, Sacli FS, Erer B, Inoko H, Emrence Z, Cakar A, Abaci N, Ustek D, Satorius C, Ueda A, Takeno M, Kim Y, Wood GM, Ombrello MJ, Meguro A, Gül A, Remmers EF, Kastner DL. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013;45(2):202–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C, Le JM, Yang B, Korman BD, Cakiris A, Aglar O, Emrence Z, Azakli H, Ustek D, Tugal-Tutkun I, Akman-Demir G, Chen W, Amos CI, Dizon MB, Kose AA, Azizlerli G, Erer B, Brand OJ, Kaklamani VG, Kaklamanis P, Ben-Chetrit E, Stanford M, Fortune F, Ghabra M, Ollier WE, Cho YH, Bang D, O’Shea J, Wallace GR, Gadina M, Kastner DL, Gül A. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet. 2010;42(8):698–702.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Elliott GC, Zeidler MP. MsSOCS expression indicates a potential role for JAK/STAT signalling in the early stages of Manduca sexta spermatogenesis. Insect Mol Biol. 2008;17(5):475–83.

    Article  PubMed  Google Scholar 

  29. Kageyama R, Yoshiura S, Masamizu Y, Niwa Y. Ultradian oscillators in somite segmentation and other biological events. Cold Spring Harb Symp Quant Biol. 2007;72:451–7.

    Article  PubMed  Google Scholar 

  30. Liu ZJ, Liu XL, Zhao J, Shi YJ, Yan LN, Chen XF, Li XH, You HB, Xu FL, Gong JP. The effects of SOCS-1 on liver endotoxin tolerance development induced by a low dose of lipopolysaccharide are related to dampen NF-kappaB-mediated pathway. Dig Liver Dis. 2008;40(7):568–77.

    Article  PubMed  Google Scholar 

  31. Seoudi N, Bergmeier LA, Hagi-Pavli E, Bibby D, Curtis MA, Fortune F. The role of TLR2 and 4 in Behcet’s disease pathogenesis. Innate Immunity. 2014;20(4):412–22.

    Article  PubMed  Google Scholar 

  32. Phipps PA, Stanford MR, Sun JB, Xiao BG, Holmgren J, Shinnick T, Hasan A, Mizushima Y, Lehner T. Prevention of mucosally induced uveitis with a HSP60-derived peptide linked to cholera toxin B subunit. Eur J Immunol. 2003;33(1):224–32.

    Article  PubMed  Google Scholar 

  33. Stanford MR, Kasp E, Whiston R, Hasan A, Todryk S, Shinnick T, Mizushima Y, Dumonde DC, van der Zee R, Lehner T. Heat shock protein peptides reactive in patients with Behcet’s disease are uveitogenic in Lewis rats. Clin Exp Immunol. 1994;97(2):226–31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Direskeneli H, Hasan A, Shinnick T, Mizushima R, van der Zee R, Fortune F, Stanford MR, Lehner T. Recognition of B-cell epitopes of the 65 kDa HSP in Behcet’s disease. Scand J Immunol. 1996;43(4):464–71.

    Article  PubMed  Google Scholar 

  35. Pervin K, Childerstone A, Shinnick T, Mizushima Y, van der Zee R, Hasan A, Vaughan R, Lehner T. T cell epitope expression of mycobacterial and homologous human 65-kilodalton heat shock protein peptides in short term cell lines from patients with Behçet’s disease. J Immunol. 1993;151(4):2273–82.

    PubMed  Google Scholar 

  36. Uchio E, Stanford M, Hasan A, Satoh S, Ohno S, Shinnick T, van der Zee R, Mizushima Y, Lehner T. HSP-derived peptides inducing uveitis and IgG and IgA antibodies. Exp Eye Res. 1998;67(6):719–27.

    Article  PubMed  Google Scholar 

  37. Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, Mizushima Y, Holmgren J, Lehner T. Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behcet’s disease. Clin Exp Immunol. 2004;137(1):201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Masuhiro Y, Kayama K, Fukushima A, Baba K, Soutsu M, Kamiya Y, Gotoh M, Yamaguchi N, Hanazawa S. SOCS-3 inhibits E2F/DP-1 transcriptional activity and cell cycle progression via interaction with DP-1. J Biol Chem. 2008;283(46):31575–83.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ogawa Y, Duru EA, Ameredes BT. Role of IL-10 in the resolution of airway inflammation. Curr Mol Med. 2008;8(5):437–45.

    Article  PubMed  Google Scholar 

  40. Beverley PC, Daser A, Michie CA, Wallace DL. Functional subsets of T cells defined by isoforms of CD45. Biochem Soc Trans. 1992;20(1):184–7.

    Article  PubMed  Google Scholar 

  41. Fei X, Zhang Y, Gu X, Qiu R, Mao Y, Ji C. Crystallization and preliminary X-ray analysis of the splice variant of human ankyrin repeat and suppressor of cytokine signaling box protein 9 (hASB9-2). Protein Pept Lett. 2008;15(6):647–9.

    Article  PubMed  Google Scholar 

  42. Lv L, Zhang J, Huang X, Zhao Y, Zhou Z, Zhang H. Lentivirus-mediated RNA interference targeting STAT4 inhibits the proliferation of vascular smooth muscle cells. Arch Med Res. 2008;39(6):582–9.

    Article  PubMed  Google Scholar 

  43. Hasan A, Fortune F, Wilson A, Warr K, Shinnick T, Mizushima Y, van der Zee R, Stanford MR, Sanderson J, Lehner T. Role of gamma delta T cells in pathogenesis and diagnosis of Behcet’s disease. Lancet. 1996;347(9004):789–94.

    Article  PubMed  Google Scholar 

  44. Hasan MS, Bergmeier LA, Petrushkin H, Fortune F. Gamma delta (gammadelta) T cells and their involvement in Behcet’s disease. J Immunol Res. 2015;2015:705831.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kaneko F, Takahashi Y, Muramatsu R, Adachi K, Miura Y, Nakane A, Minagawa T. Natural killer cell numbers and function in peripheral lymphoid cells in Behcet’s disease. Br J Dermatol. 1985;113(3):313–8.

    Article  PubMed  Google Scholar 

  46. Yamaguchi Y, Takahashi H, Satoh T, Okazaki Y, Mizuki N, Takahashi K, Ikezawa Z, Kuwana M. Natural killer cells control a T-helper 1 response in patients with Behcet’s disease. Arthritis Research & Therapy. 2010;12(3):R80.

    Article  Google Scholar 

  47. Hasan MS, Ryan PL, Bergmeier LA, Fortune F. Circulating NK cells and their subsets in Behcet’s disease. Clin Exp Immunol. 2017;188:311–22.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ben Ahmed M, Houman H, Miled M, Dellagi K, Louzir H. Involvement of chemokines and Th1 cytokines in the pathogenesis of mucocutaneous lesions of Behçet’s disease. Arthritis Rheum. 2004;50(7):2291–5.

    Article  PubMed  Google Scholar 

  49. Curnow SJ, Pryce K, Modi N, Knight B, Graham EM, Stewart JE, Fortune F, Stanford MR, Murray PI, Wallace GR. Serum cytokine profiles in Behçet’s disease: is there a role for IL-15 in pathogenesis? Immunol Lett. 2008;121(1):7–12.

    Article  PubMed  Google Scholar 

  50. Hamedi M, Bergmeier LA, Hagi-Pavli E, Vartoukian SR, Fortune F. Differential expression of suppressor of cytokine signalling proteins in Behçet’s disease. Scand J Immunol. 2014;80(5):369–76.

    Article  PubMed  Google Scholar 

  51. Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-Demiralp E, Alibaz-Oner F, Ozen G, Wren JD, Saruhan-Direskeneli G, Sawalha AH, Direskeneli H. Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun. 2015;16:176.

    Article  PubMed  Google Scholar 

  52. Eisen D, Carrozzo M, Bagan Sebastian JV, Thongprasom K. Number V oral lichen planus: clinical features and management. Oral Dis. 2005;11(6):338–49.

    Article  PubMed  Google Scholar 

  53. Setterfield JF, Neill S, Shirlaw PJ, Theron J, Vaughan R, Escudier M, Challacombe SJ, Black MM. The vulvovaginal gingival syndrome: a severe subgroup of lichen planus with characteristic clinical features and a novel association with the class II HLA DQB1*0201 allele. J Am Acad Dermatol. 2006;55(1):98–113.

    Article  PubMed  Google Scholar 

  54. Fitzpatrick SG, Hirsch SA, Gordon SC. The malignant transformation of oral lichen planus and oral lichenoid lesions: a systematic review. Journal of the American Dental Association (1939). 2014;145(1):45–56.

    Article  Google Scholar 

  55. Aghbari SMH, Abushouk AI, Attia A, Elmaraezy A, Menshawy A, Ahmed MS, Elsaadany BA, Ahmed EM. Malignant transformation of oral lichen planus and oral lichenoid lesions: a meta-analysis of 20095 patient data. Oral Oncol. 2017;68:92–102.

    Article  PubMed  Google Scholar 

  56. Lodi G, Scully C, Carrozzo M, Griffiths M, Sugerman PB, Thongprasom K. Current controversies in oral lichen planus: report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(1):40–51.

    Article  PubMed  Google Scholar 

  57. Porter SR, Lodi G, Chandler K, Kumar N. Development of squamous cell carcinoma in hepatitis C virus-associated lichen planus. Oral Oncol. 1997b;33(1):58–9.

    Article  PubMed  Google Scholar 

  58. Mustafa MB, Porter SR, Smoller BR, Sitaru C. Oral mucosal manifestations of autoimmune skin diseases. Autoimmun Rev. 2015;14(10):930–51.

    Article  PubMed  Google Scholar 

  59. Eversole LR, Dam J, Ficarra G, Hwang CY. Leukocyte adhesion molecules in oral lichen planus: a T cell-mediated immunopathologic process. Oral Microbiol Immunol. 1994;9(6):376–83.

    Article  PubMed  Google Scholar 

  60. Porter SR, Kirby A, Olsen I, Barrett W. Immunologic aspects of dermal and oral lichen planus: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997a;83(3):358–66.

    Article  PubMed  Google Scholar 

  61. Walsh LJ, Savage NW, Ishii T, Seymour GJ. Immunopathogenesis of oral lichen planus. J Oral Pathol Med. 1990;19(9):389–96.

    Article  PubMed  Google Scholar 

  62. Sinon SH, Rich AM, Parachuru VP, Firth FA, Milne T, Seymour GJ. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus. J Oral Pathol Med. 2016;45(1):28–34.

    Article  PubMed  Google Scholar 

  63. Thornhill MH. Immune mechanisms in oral lichen planus. Acta Odontol Scand. 2001;59(3):174–7.

    Article  PubMed  Google Scholar 

  64. Wang H, Zhang D, Han Q, Zhao X, Zeng X, Xu Y, Sun Z, Chen Q. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. J Oral Pathol Med. 2016;45(6):385–93.

    Article  PubMed  Google Scholar 

  65. Zhou XJ, Savage NW, Sugerman PB, Walsh LJ, Aldred MJ, Seymour GJ. TCR V beta gene expression in lesional T lymphocyte cell lines in oral lichen planus. Oral Dis. 1996;2(4):295–8.

    Article  PubMed  Google Scholar 

  66. Walton LJ, Macey MG, Thornhill MH, Farthing PM. Intra-epithelial subpopulations of T lymphocytes and Langerhans cells in oral lichen planus. J Oral Pathol Med. 1998;27(3):116–23.

    Article  PubMed  Google Scholar 

  67. Brown DW, Furness J, Speight PM, Thomas GJ, Li J, Thornhill MH, Farthing PM. Mechanisms of binding of cutaneous lymphocyte-associated antigen-positive and alphaebeta7-positive lymphocytes to oral and skin keratinocytes. Immunology. 1999;98(1):9–15.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li J, Farthing PM, Thornhill MH. Cytokine regulation of major histocompatibility complex antigen expression by human oral and skin keratinocytes. Arch Oral Biol. 1996a;41(6):533–8.

    Article  PubMed  Google Scholar 

  69. Li J, Ireland GW, Farthing PM, Thornhill MH. Epidermal and oral keratinocytes are induced to produce RANTES and IL-8 by cytokine stimulation. The Journal of Investigative Dermatology. 1996b;106(4):661–6.

    Article  PubMed  Google Scholar 

  70. Monteiro BV, Pereira Jdos S, Nonaka CF, Godoy GP, da Silveira EJ, Miguel MC. Immunoexpression of Th17-related cytokines in oral lichen planus. Appl Immunohistochem Mol Morphol. 2015;23(6):409–15.

    Article  PubMed  Google Scholar 

  71. Firth FA, Friedlander LT, Parachuru VPB, Kardos TB, Seymour GJ, Rich AM. Regulation of immune cells in oral lichen planus. Arch Dermatol Res. 2015;307(4):333–9.

    Article  PubMed  Google Scholar 

  72. Trucci VM, Salum FG, Figueiredo MA, Cherubini K. Interrelationship of dendritic cells, type 1 interferon system, regulatory T cells and toll-like receptors and their role in lichen planus and lupus erythematosus: a literature review. Arch Oral Biol. 2013;58(10):1532–40.

    Article  PubMed  Google Scholar 

  73. Margaix-Muñoz M, Bagán JV, Jiménez Y, Sarrión MG, Poveda-Roda R. Graft-versus-host disease affecting oral cavity. A review. J Clin Exp Dent. 2015;7(1):e138–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Farthing P, Bagan JV, Scully C. Mucosal disease series. Number IV. Erythema multiforme. Oral Dis. 2005;11(5):261–7.

    Article  PubMed  Google Scholar 

  75. Yacoub M-R, Berti A, Campochiaro C, Tombetti E, Ramirez GA, Nico A, Di Leo E, Fantini P, Sabbadini MG, Nettis E, Colombo G. Drug induced exfoliative dermatitis: state of the art. Clin Mol Allergy. 2016;14(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Black M, Mignogna MD, Scully C. Number II. Pemphigus vulgaris. Oral Dis. 2005;11(3):119–30.

    Article  PubMed  Google Scholar 

  77. Kasperkiewicz M, Ellebrecht CT, Takahashi H, Yamagami J, Zillikens D, Payne AS, Amagai M. Pemphigus. Nat Rev Dis Primers. 2017;3(17026):26.

    Google Scholar 

  78. Koneczny I, Stevens JA, De Rosa A, Huda S, Huijbers MG, Saxena A, Maestri M, Lazaridis K, Zisimopoulou P, Tzartos S, Verschuuren J, van der Maarel SM, van Damme P, De Baets MH, Molenaar PC, Vincent A, Ricciardi R, Martinez-Martinez P, Losen M. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun. 2017;77:104–15.

    Article  PubMed  Google Scholar 

  79. Bernhard H, Karbach J, Strittmatter W, Meyer zum Buschenfelde KH, Knuth A. Induction of tumor-cell lysis by bi-specific antibody recognizing ganglioside GD2 and T-cell antigen CD3. Int J Cancer. 1993;55(3):465–70.

    Article  PubMed  Google Scholar 

  80. Harman KE, Seed PT, Gratian MJ, Bhogal BS, Challacombe SJ, Black MM. The severity of cutaneous and oral pemphigus is related to desmoglein 1 and 3 antibody levels. Br J Dermatol. 2001;144(4):775–80.

    Article  PubMed  Google Scholar 

  81. Amagai M, Matsuyoshi N, Wang ZH, Andl C, Stanley JR. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat Med. 2000;6(11):1275–7.

    Article  PubMed  Google Scholar 

  82. Bagan J, Lo Muzio L, Scully C. Mucosal disease series. Number III. Mucous membrane pemphigoid. Oral Dis. 2005;11(4):197–218.

    Article  PubMed  Google Scholar 

  83. Dabelsteen E. Molecular biological aspects of acquired bullous diseases. Crit Rev Oral Biol Med. 1998;9(2):162–78.

    Article  PubMed  Google Scholar 

  84. Setterfield J, Challacombe SJ, Black MM. Bullous pemphigoid localized to the mouth. Br J Dermatol. 1997;137(5):825.

    Article  PubMed  Google Scholar 

  85. Setterfield J, Shirlaw PJ, Kerr-Muir M, Neill S, Bhogal BS, Morgan P, Tilling K, Challacombe SJ, Black MM. Mucous membrane pemphigoid: a dual circulating antibody response with IgG and IgA signifies a more severe and persistent disease. Br J Dermatol. 1998;138(4):602–10.

    Article  PubMed  Google Scholar 

  86. Setterfield J, Theron J, Vaughan RW, Welsh KI, Mallon E, Wojnarowska F, Challacombe SJ, Black MM. Mucous membrane pemphigoid: HLA-DQB1*0301 is associated with all clinical sites of involvement and may be linked to antibasement membrane IgG production. Br J Dermatol. 2001;145(3):406–14.

    Article  PubMed  Google Scholar 

  87. Xu HH, Werth VP, Parisi E, Sollecito TP. Mucous membrane pemphigoid. Dent Clin N Am. 2013;57(4):611–30.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lucchesi D, Pitzalis C, Bombardieri M. EBV and other viruses as triggers of tertiary lymphoid structures in primary Sjogren’s syndrome. Expert Rev Clin Immunol. 2014;10(4):445–55.

    Article  PubMed  Google Scholar 

  89. Terada K, Katamine S, Eguchi K, Moriuchi R, Kita M, Shimada H, Yamashita I, Iwata K, Tsuji Y, Nagataki S, et al. Prevalence of serum and salivary antibodies to HTLV-1 in Sjogren’s syndrome. Lancet. 1994;344(8930):1116–9.

    Article  PubMed  Google Scholar 

  90. Haaheim LR, Halse AK, Kvakestad R, Stern B, Normann O, Jonsson R. Serum antibodies from patients with primary Sjogren’s syndrome and systemic lupus erythematosus recognize multiple epitopes on the La(SS-B) autoantigen resembling viral protein sequences. Scand J Immunol. 1996;43(1):115–21.

    Article  PubMed  Google Scholar 

  91. Kyriakidis NC, Kapsogeorgou EK, Gourzi VC, Konsta OD, Baltatzis GE, Tzioufas AG. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin Exp Immunol. 2014a;178(3):548–60.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kyriakidis NC, Kapsogeorgou EK, Tzioufas AG. A comprehensive review of autoantibodies in primary Sjogren’s syndrome: clinical phenotypes and regulatory mechanisms. J Autoimmun. 2014b;51:67–74.

    Article  PubMed  Google Scholar 

  93. Awada A, Nicaise C, Ena S, Schandene L, Rasschaert J, Popescu I, Gangji V, Soyfoo MS. Potential involvement of the IL-33-ST2 axis in the pathogenesis of primary Sjogren’s syndrome. Ann Rheum Dis. 2014;73(6):1259–63.

    Article  PubMed  Google Scholar 

  94. Vartoukian SR, Tilakaratne WM, Seoudi N, Bombardieri M, Bergmeier L, Tappuni AR, Fortune F. Dysregulation of the suppressor of cytokine signalling 3-signal transducer and activator of transcription-3 pathway in the aetiopathogenesis of Sjögren’s syndrome. Clin Exp Immunol. 2014;177(3):618–29.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ferro F, Marcucci E, Orlandi M, Baldini C, Bartoloni-Bocci E. One year in review 2017: primary Sjogren’s syndrome. Clin Exp Rheumatol. 2017;35(2):179–91.

    PubMed  Google Scholar 

  96. Mavragani CP. Mechanisms and new strategies for primary Sjogren’s syndrome. Annu Rev Med. 2017;68:331–43.

    Article  PubMed  Google Scholar 

  97. Alunno A, Carubbi F, Bistoni O, Caterbi S, Bartoloni E, Mirabelli G, Cannarile F, Cipriani P, Giacomelli R, Gerli R. T regulatory and T helper 17 cells in primary Sjogren’s syndrome: facts and perspectives. Mediat Inflamm. 2015;243723(10):28.

    Google Scholar 

  98. Barone F, Bombardieri M, Manzo A, Blades MC, Morgan PR, Challacombe SJ, Valesini G, Pitzalis C. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren’s syndrome. Arthritis Rheum. 2005;52(6):1773–84.

    Article  PubMed  Google Scholar 

  99. Barone F, Bombardieri M, Rosado MM, Morgan PR, Challacombe SJ, De Vita S, Carsetti R, Spencer J, Valesini G, Pitzalis C. CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren’s syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J Immunol. 2008;180(7):5130–40.

    Article  PubMed  Google Scholar 

  100. Barone F, Nayar S, Campos J, Cloake T, Withers DR, Toellner KM, Zhang Y, Fouser L, Fisher B, Bowman S, Rangel-Moreno J, Garcia-Hernandez Mde L, Randall TD, Lucchesi D, Bombardieri M, Pitzalis C, Luther SA, Buckley CD. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci U S A. 2015;112(35):11024–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Risselada AP, Looije MF, Kruize AA, Bijlsma JW, van Roon JA. The role of ectopic germinal centers in the immunopathology of primary Sjogren’s syndrome: a systematic review. Semin Arthritis Rheum. 2013;42(4):368–76.

    Article  PubMed  Google Scholar 

  102. Kuo CF, Grainge MJ, Valdes AM, See LC, Luo SF, Yu KH, Zhang W, Doherty M. Familial aggregation of systemic lupus erythematosus and coaggregation of autoimmune diseases in affected families. JAMA Intern Med. 2015;175(9):1518–26.

    Article  PubMed  Google Scholar 

  103. Nezos A, Mavragani CP. Contribution of genetic factors to Sjogren’s syndrome and Sjogren’s syndrome related lymphomagenesis. J Immunol Res. 2015;754825(10):15.

    Google Scholar 

  104. Lessard CJ, Li H, Adrianto I, Ice JA, Rasmussen A, Grundahl KM, Kelly JA, Dozmorov MG, Miceli-Richard C, Bowman S, Lester S, Eriksson P, Eloranta ML, Brun JG, Goransson LG, Harboe E, Guthridge JM, Kaufman KM, Kvarnstrom M, Jazebi H, Cunninghame Graham DS, Grandits ME, Nazmul-Hossain AN, Patel K, Adler AJ, Maier-Moore JS, Farris AD, Brennan MT, Lessard JA, Chodosh J, Gopalakrishnan R, Hefner KS, Houston GD, Huang AJ, Hughes PJ, Lewis DM, Radfar L, Rohrer MD, Stone DU, Wren JD, Vyse TJ, Gaffney PM, James JA, Omdal R, Wahren-Herlenius M, Illei GG, Witte T, Jonsson R, Rischmueller M, Ronnblom L, Nordmark G, Ng WF, Mariette X, Anaya JM, Rhodus NL, Segal BM, Scofield RH, Montgomery CG, Harley JB, Sivils KL. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren’s syndrome. Nat Genet. 2013;45(11):1284–92.

    Article  PubMed  Google Scholar 

  105. Brito-Zeron P, Baldini C, Bootsma H, Bowman SJ, Jonsson R, Mariette X, Sivils K, Theander E, Tzioufas A, Ramos-Casals M. Sjogren syndrome. Nat Rev Dis Primers. 2016;2:16047. https://doi.org/10.1038/nrdp.2016.47.

    Article  PubMed  Google Scholar 

  106. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71.

    Article  Google Scholar 

  107. Srinivasprasad V, Dineshshankar J, Sathiyajeeva J, Karthikeyan M, Sunitha J, Ragunathan R. Liaison between micro-organisms and oral cancer. Journal of Pharmacy & Bioallied Sciences. 2015;7(Suppl 2):S354–60.

    Article  Google Scholar 

  108. Chaturvedi AK, D'Souza G, Gillison ML, Katki HA. Burden of HPV-positive oropharynx cancers among ever and never smokers in the U.S. population. Oral Oncol. 2016;60:61–7.

    Article  PubMed  Google Scholar 

  109. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26(4):612–9.

    Article  PubMed  Google Scholar 

  110. Epstein JB. The mouth: a window on systemic disease. Can Fam Physician. 1980;26:953–7.

    PubMed  PubMed Central  Google Scholar 

  111. Long RG, Hlousek L, Doyle JL. Oral manifestations of systemic diseases. Mt Sinai J Med. 1998;65(5–6):309–15.

    PubMed  Google Scholar 

  112. Scully C, Hodgson T, Lachmann H. Auto-inflammatory syndromes and oral health. Oral Dis. 2008;14(8):690–9.

    Article  PubMed  Google Scholar 

  113. Campbell H, Escudier M, Patel P, Nunes C, Elliott TR, Barnard K, Shirlaw P, Poate T, Cook R, Milligan P, Brostoff J, Mentzer A, Lomer MC, Challacombe SJ, Sanderson JD. Distinguishing orofacial granulomatosis from crohn’s disease: two separate disease entities? Inflamm Bowel Dis. 2011a;17(10):2109–15.

    Article  PubMed  Google Scholar 

  114. Campbell HE, Escudier MP, Patel P, Challacombe SJ, Sanderson JD, Lomer MC. Review article: cinnamon- and benzoate-free diet as a primary treatment for orofacial granulomatosis. Aliment Pharmacol Ther. 2011b;34(7):687–701.

    Article  PubMed  Google Scholar 

  115. Savage NW, Barnard K, Shirlaw PJ, Rahman D, Mistry M, Escudier MP, Sanderson JD, Challacombe SJ. Serum and salivary IgA antibody responses to Saccharomyces cerevisiae, Candida albicans and Streptococcus mutans in orofacial granulomatosis and Crohn’s disease. Clin Exp Immunol. 2004;135(3):483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Barnes RM, Allan S, Taylor-Robinson CH, Finn R, Johnson PM. Serum antibodies reactive with Saccharomyces cerevisiae in inflammatory bowel disease: is IgA antibody a marker for Crohn’s disease? International Archives of Allergy and Applied Immunology. 1990;92(1):9–15.

    Article  PubMed  Google Scholar 

  117. Whittall T, Wang Y, Kelly CG, Thompson R, Sanderson J, Lomer M, Soon SY, Bergmeier LA, Singh M, Lehner T. Tumour necrosis factor-alpha production stimulated by heat shock protein 70 and its inhibition in circulating dendritic cells and cells eluted from mucosal tissues in Crohn’s disease. Clin Exp Immunol. 2006;143(3):550–9.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zbar AP, Ben-Horin S, Beer-Gabel M, Eliakim R. Oral Crohn’s disease: is it a separable disease from orofacial granulomatosis? A review. Journal of Crohn's & Colitis. 2012;6(2):135–42.

    Article  Google Scholar 

  119. Butto LF, Haller D. Dysbiosis in Crohn’s disease: joint action of stochastic injuries and focal inflammation in the gut. Gut Microbes. 2017;8(1):53–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Butto LF, Schaubeck M, Haller D. Mechanisms of microbe-host interaction in Crohn’s disease: dysbiosis vs. pathobiont selection. Front Immunol. 2015;6:555.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Yazisiz V. Similarities and differences between Behcet’s disease and Crohn’s disease. World J Gastrointest Pathophysiol. 2014;5(3):228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Stamnaes J, Sollid LM. Celiac disease: autoimmunity in response to food antigen. Semin Immunol. 2015;27(5):343–52.

    Article  PubMed  Google Scholar 

  123. Tukaj S, Gorog A, Kleszczynski K, Zillikens D, Karpati S, Kasperkiewicz M. Autoimmunity to heat shock proteins and vitamin D status in patients with celiac disease without associated dermatitis herpetiformis. J Steroid Biochem Mol Biol. 2017;173:23–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Ann Bergmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bergmeier, L.A., Fortune, F. (2018). Non-infectious Diseases of the Oral Mucosa: The Importance of Immune Functions. In: Bergmeier, L. (eds) Oral Mucosa in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-56065-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56065-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56064-9

  • Online ISBN: 978-3-319-56065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics