Skip to main content

An Overview of Transient Fault Detection Techniques

  • Chapter
  • First Online:
Modeling and Monitoring of Pipelines and Networks

Part of the book series: Applied Condition Monitoring ((ACM,volume 7))

Abstract

This chapter overviews the theory and strategies of transient fault detection , considering both active and passive systems, and contrasting the more common frequent approaches with time-domain methodologies. The chapter contends that real complex systems may have mimics, where one characteristic can locally impersonate another. The chapter seeks to examine the “state of play” in these areas, providing a factual summary of what has been shown and demonstrated to date, along with a more speculative set of reflections about challenges and about which methods appear to the authors to have the greatest promise for deployment and commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beck, S., Curren, M., Sims, N., & Stanway, R. (2005). Pipeline network features and leak detection by cross-correlation analysis of reflected waves. Journal of Hydraulic Engineering, 131(8), 715–723.

    Article  Google Scholar 

  • Belsito, S., Lombardi, P., Andreussi, P., & Banerjee, S. (1998). Leak detection in liquefied gas pipelines by artificial neural networks. American Institute of Chemical Engineers AIChE Journal, 44(12), 2675.

    Article  Google Scholar 

  • Brunone, B. (1999). Transient test-based technique for leak detection in outfall pipes. Journal of Water Resources Planning and Management, 125(5), 302–306.

    Article  Google Scholar 

  • Brunone, B., & Ferrante, M. (2001). Detecting leaks in pressurised pipes by means of transients. Journal of Hydraulic Research, 39(5), 539–547.

    Article  Google Scholar 

  • Burn, S., DeSilva, D., Eiswirth, M., Hunaidi, O., Speers, A., & Thornton, J. (1999). Pipe leakage-future challenges and solutions. Australia: Pipes Wagga Wagga.

    Google Scholar 

  • Chaudhry, M. H. (1979). Applied hydraulic transients. Technical report: Springer.

    Google Scholar 

  • Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-environment Research, 2(4), 212–227.

    Article  Google Scholar 

  • Covas, D., & Ramos, H. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis. Journal of Water Resources Planning and Management, 136(2), 248–257.

    Article  Google Scholar 

  • Covas, D., Ramos, H., & De Almeida, A. B. (2005). Standing wave difference method for leak detection in pipeline systems. Journal of Hydraulic Engineering, 131(12), 1106–1116.

    Article  Google Scholar 

  • Duan, H., Lee, P., Ghidaoui, M. S., & Tuck, J. (2014). Transient wave-blockage interaction and extended blockage detection in elastic water pipelines. Journal of Fluids and Structures, 46, 2–16.

    Article  Google Scholar 

  • Duan, H. F., Ghidaoui, M., Lee, P. J., & Tung, Y. K. (2010). Unsteady friction and visco-elasticity in pipe fluid transients. Journal of Hydraulic Research, 48(3), 354–362.

    Article  Google Scholar 

  • Duan, H. F., Lee, P. J., Ghidaoui, M. S., & Tung, Y. K. (2011a). Extended blockage detection in pipelines by using the system frequency response analysis. Journal of Water Resources Planning and Management, 138(1), 55–62.

    Article  Google Scholar 

  • Duan, H. F., Lee, P. J., Ghidaoui, M. S., & Tung, Y. K. (2011b). Leak detection in complex series pipelines by using the system frequency response method. Journal of Hydraulic Research, 49(2), 213–221.

    Article  Google Scholar 

  • Ferrante, M., & Brunone, B. (2003). Pipe system diagnosis and leak detection by unsteady-state tests. 2. wavelet analysis. Advances in Water Resources, 26(1), 107–116.

    Article  Google Scholar 

  • Ferrante, M., Brunone, B., & Meniconi, S. (2007). Wavelets for the analysis of transient pressure signals for leak detection. Journal of Hydraulic Engineering, 133(11), 1274–1282.

    Article  Google Scholar 

  • Ferrante, M., Brunone, B., & Meniconi, S. (2009). Leak detection in branched pipe systems coupling wavelet analysis and a lagrangian model. Journal of Water Supply Research and Technology-AQUA, 58(2), 95–106.

    Article  Google Scholar 

  • Gong, J., Lambert, M. F., Simpson, A. R., Zecchin, A. C., et al. (2012a). Distributed deterioration detection in single pipes using the impulse response function. In WDSA 2012: 14th Water Distribution Systems Analysis Conference, 24–27 September 2012 in Adelaide, South Australia (p. 702). Engineers Australia.

    Google Scholar 

  • Gong, J., Simpson, A. R., Lambert, M. F., Zecchin, A. C., Kim, Y. I., & Tijsseling, A. S. (2012b). Detection of distributed deterioration in single pipes using transient reflections. Journal of Pipeline Systems Engineering and Practice, 4(1), 32–40.

    Article  Google Scholar 

  • Gong, J., Zecchin, A. C., Simpson, A. R., & Lambert, M. F. (2013). Frequency response diagram for pipeline leak detection: Comparing the odd and even harmonics. Journal of Water Resources Planning and Management, 140(1), 65–74.

    Article  Google Scholar 

  • Jönsson, L. & Larson, M. (1992). Leak detection through hydraulic transient analysis. In Pipeline Systems (pp. 273–286). Springer.

    Google Scholar 

  • Kapelan, Z. S., Savic, D. A., & Walters, G. A. (2003). A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. Journal of Hydraulic Research, 41(5), 481–492.

    Article  Google Scholar 

  • Kim, S. (2014). Inverse transient analysis for a branched pipeline system with leakage and blockage using impedance method. Procedia Engineering, 89, 1350–1357.

    Article  Google Scholar 

  • Kim, S. H. (2005). Extensive development of leak detection algorithm by impulse response method. Journal of Hydraulic Engineering, 131(3), 201–208.

    Article  Google Scholar 

  • Lee, P. J., et al. (2002). Leak detection in pipelines using an inverse resonance method. Proc., 2002 Conf. on Water Resources Planning and Management. Reston, Va: ASCE.

    Google Scholar 

  • Lee, P. J., Duan, H. F., Tuck, J., & Ghidaoui, M. (2014). Numerical and experimental study on the effect of signal bandwidth on pipe assessment using fluid transients. Journal of Hydraulic Engineering, 141(2), 04014074.

    Article  Google Scholar 

  • Lee, P. J., Lambert, M. F., Simpson, A. R., Vítkovskỳ, J. P., & Liggett, J. (2006). Experimental verification of the frequency response method for pipeline leak detection. Journal of Hydraulic Research, 44(5), 693–707.

    Article  Google Scholar 

  • Lee, P. J., Vítkovskỳ, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2005). Leak location using the pattern of the frequency response diagram in pipelines: A numerical study. Journal of Sound and Vibration, 284(3), 1051–1073.

    Article  Google Scholar 

  • Lee, P., Lambert, M., Simpson, A., Vítkovsky, J., & Misiunas, D. (2007). Leak location in single pipelines using transient reflections. Australian Journal of Water Resources, 11(1), 53–65.

    Google Scholar 

  • Liggett, J. A., & Chen, L. C. (1994). Inverse transient analysis in pipe networks. Journal of Hydraulic Engineering, 120(8), 934–955.

    Article  Google Scholar 

  • Liou, C. P. (1998). Pipeline leak detection by impulse response extraction. Journal of Fluids Engineering, 120(4), 833–838.

    Article  Google Scholar 

  • Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2011a). Transient tests for locating and sizing illegal branches in pipe systems. Journal of Hydroinformatics, 13(3), 334–345.

    Article  Google Scholar 

  • Meniconi, S., Brunone, B., Ferrante, M., & Massari, C. (2011b). Small amplitude sharp pressure waves to diagnose pipe systems. Water Resources Management, 25(1), 79–96.

    Article  Google Scholar 

  • Misiunas, D., Vítkovskỳ, J., Olsson, G., Simpson, A., & Lambert, M. (2005). Pipeline break detection using pressure transient monitoring. Journal of Water Resources Planning and Management, 131(4), 316–325.

    Article  Google Scholar 

  • Mpesha, W., Gassman, S. L., & Chaudhry, M. H. (2001). Leak detection in pipes by frequency response method. Journal of Hydraulic Engineering, 127(2), 134–147.

    Article  Google Scholar 

  • Nash, G. A., & Karney, B. W. (1999). Efficient inverse transient analysis in series pipe systems. Journal of Hydraulic Engineering, 125(7), 761–764.

    Article  Google Scholar 

  • Nixon, W., Ghidaoui, M. S., & Kolyshkin, A. A. (2006). Range of validity of the transient damping leakage detection method. Journal of hydraulic engineering, 132(9), 944–957.

    Article  Google Scholar 

  • Nixon, W., & Ghidaoui, M. S. (2007). Numerical sensitivity study of unsteady friction in simple systems with external flows. Journal of Hydraulic Engineering, 133(7), 736–749.

    Article  Google Scholar 

  • Puust, R., Kapelan, Z., Savic, D., & Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45.

    Article  Google Scholar 

  • Sattar, A. M., et al. (2008). Partial blockage detection in pipelines by frequency response method. Journal of Hydraulic Engineering, 134(1), 76–89.

    Article  Google Scholar 

  • Shamloo, H., & Haghighi, A. (2009). Leak detection in pipelines by inverse backward transient analysis. Journal of Hydraulic Research, 47(3), 311–318.

    Article  Google Scholar 

  • Soares, A. K., Covas, D. I., & Reis, L. F. R. (2011). Leak detection by inverse transient analysis in an experimental pvc pipe system. Journal of Hydroinformatics, 13(2), 153–166.

    Article  Google Scholar 

  • Stephens, M., Lambert, M., Simpson, A., Vítkovskỳ, J., & Nixon, J. (2004). Field tests for leakage, air pocket, and discrete blockage detection using inverse transient analysis in water distribution pipes. In 2004 World Water and Environmental Resources Congress.

    Google Scholar 

  • Stoianov, I., Karney, B., Covas, D., Masksimovic, C., & Graham, N. (2001). Wavelet processing of transient signals for pipeline leak location and quantification.

    Google Scholar 

  • Taghvaei, M., Beck, S., & Staszewski, W. (2006). Leak detection in pipelines using cepstrum analysis. Measurement Science and Technology, 17(2), 367.

    Article  Google Scholar 

  • Tuck, J et al. (2013). Analysis of transient signlas in simple pipeline systems with an extended blockage. Journal of Hydraulic Research, 51(6), 623–633.

    Google Scholar 

  • Vítkovskỳ, J. P., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection. Journal of Water Resources Planning and Management, 133(6), 519–530.

    Article  Google Scholar 

  • Vítkovskỳ, J. P., Simpson, A. R., & Lambert, M. F. (2000). Leak detection and calibration using transients and genetic algorithms. Journal of Water Resources Planning and Management, 126(4), 262–265.

    Article  Google Scholar 

  • Vítkovskỳ, J., Lee, P. J., Stephens, M. L., Lambert, M. F., Simpson, A. R., & Liggett, J. A. (2003). Leak and blockage detection in pipelines via an impulse response method. Pumps Electromechanical Devices and Systems Applied to Urban Water Management, 1, 423–430.

    Google Scholar 

  • Wang, X. J., Lambert, M. F., & Simpson, A. R. (2005). Detection and location of a partial blockage in a pipeline using damping of fluid transients. Journal of Water Resources Planning and Management, 131(3), 244–249.

    Article  Google Scholar 

  • Wang, X. J., Lambert, M. F., Simpson, A. R., Liggett, J. A., & Vítkovskỳ, J. P. (2002). Leak detection in pipelines using the damping of fluid transients. Journal of Hydraulic Engineering, 128(7), 697–711.

    Article  Google Scholar 

  • Wang, X. J., Lambert, M. F., Simpson, A. R., Vitkovsky, J. P., et al. (2001). Leak detection in pipelines and pipe networks: a review. In 6th Conference on Hydraulics in Civil Engineering: The State of Hydraulics; Proceedings (p. 391). Australia: Institution of Engineers.

    Google Scholar 

  • Wylie, E. B. & Streeter, V. L. (1978). Fluid transients (401 p.). New York, McGraw-Hill International Book Co., 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Karney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, X., Karney, B. (2017). An Overview of Transient Fault Detection Techniques. In: Verde, C., Torres, L. (eds) Modeling and Monitoring of Pipelines and Networks. Applied Condition Monitoring, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-55944-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55944-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55943-8

  • Online ISBN: 978-3-319-55944-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics