Skip to main content

Analysis of Average Communicability in Complex Networks

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10199))

Included in the following conference series:

  • 1729 Accesses

Abstract

The average communicability of a complex network is an important measure of the efficiency of information exchange in the entire network. The optimization of average communicability is a significant problem in network design for various applications in science and engineering. Since the search for the topology that achieves the highest average communicability is a very difficult problem due to the enormous size of the solution space, the genetic algorithm is a good choice for search. From numerical simulation, we discover a positive correlation between the variance of the degree distribution with the average communicability of the network. This correlation is then proven mathematically, with applications to the comparison for the average communicability of two networks with the same number of nodes and links using the largest eigenvalues of their adjacency matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Scott, J.: Social Network Analysis. Sage, New York (2012)

    Google Scholar 

  2. Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl. Acad. Sci. 105(41), 15649–15653 (2008)

    Article  Google Scholar 

  3. Dunne, J.A., Williams, R.J., Martinez, N.D.: Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. 99(20), 12917–12922 (2002)

    Article  Google Scholar 

  4. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  5. Cai, W., Chen, L., Ghanbarnejad, F., Grassberger, P.: Avalanche outbreaks emerging in cooperative contagions. Nat. Phys. 11(11), 936–940 (2015)

    Article  Google Scholar 

  6. Rieser, M., Nagel, K.: Network breakdown ‘at the edge of chaos’ in multi-agent traffic simulations. Eur. Phys. J. B 63(3), 321–327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvert, K.L., Doar, M.B., Zegura, E.W.: Modeling internet topology. Commun. Mag. IEEE 35(6), 160–163 (1997)

    Article  Google Scholar 

  8. Aiiqullah, M.M., Rao, S.S.: Reliability optimization of communication networks using simulated annealing. Microelectron. Reliab. 33, 1303–1319 (1993)

    Article  Google Scholar 

  9. Jan, R.-H., Hwang, F.-J., Chen, S.-T.: Topological optimization of a communication network subject to a reliability constraint. IEEE Trans. Reliab. 42, 63–70 (1993)

    Article  MATH  Google Scholar 

  10. Pierre, S., Hyppolite, M.-A., Bourjolly, J.-M., Dioume, O.: Topological design of computer communication networks using simulated annealing. Eng. Appl. Artif. Intell. 8, 61–69 (1995)

    Article  Google Scholar 

  11. Aggarwal, K.K., Chopra, Y.C., Bajwa, J.S.: Topological layout of links for optimizing the overall reliability in a computer communication system. Microelectron. Reliab. 22, 347–351 (1982)

    Article  Google Scholar 

  12. Fetterolf, P.C., Anandalingam, G.: Optimal design of LAN-WAN internetworks: an approach using simulated annealing. Anna. Oper. Res. 36, 275–298 (1992)

    Article  MATH  Google Scholar 

  13. Wilkov, R.S.: Design of computer networks based on a new reliability measure. In: Fox, I. (ed.) Proceedings of the Symposium on Computer-Communications Networks and Teletraffic, pp. 371–384. Polytechnic Institute of Brooklyn, Brooklyn (1972)

    Google Scholar 

  14. Walters, G.A., Smith, D.K.: Evolutionary design algorithm for optimal layout of tree networks. Eng. Optim. 24, 261–281 (1995)

    Article  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, CA (1979)

    MATH  Google Scholar 

  16. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. da Fontoura Costa, L., Travieso Jr., G., Rodrigues, O.N., Villas Boas, P.R., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60, 329–412 (2011)

    Article  Google Scholar 

  18. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Estrada, E., Hatano, N.: Communicability in complex networks. Phys. Rev. E 77(3), 036111 (2008)

    Article  MathSciNet  Google Scholar 

  20. Estrada, E., Hatano, N., Benzi, M.: The physics of communicability in complex networks. Phys. Rep. 514(3), 89–119 (2012)

    Article  MathSciNet  Google Scholar 

  21. Jordán, F., Scheuring, I.: Searching for keystones in ecological networks. Oikos 99, 607–612 (2002)

    Article  Google Scholar 

  22. Zotenko, E., Mestre, J., O’Leary, D.P., Przytycka, T.M.: Why do hubs in yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput. Biol. 4, e1000140 (2008)

    Article  MathSciNet  Google Scholar 

  23. Costa, L., Rodrigues, F.: What is there between any two nodes in a complex network? Arxiv.org (2008). http://arxiv.org/abs/0801.4068. Accessed 16 Mar 2016

  24. Amaral, L., Ottino, J.: Complex networks. Eur. Phys. J. B Condens. Matter 38(2), 147–162 (2004)

    Google Scholar 

  25. Newman, M., Strogatz, S., Watts, D.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Article  Google Scholar 

  26. Wang, Z., Szeto, K.Y.: Comparing the reliability of networks by spectral analysis. Eur. Phys. J. B 87, 234 (2014). doi:10.1140/epjb/e2014-50498-0

    Article  Google Scholar 

  27. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  28. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, London (1974)

    Book  MATH  Google Scholar 

  29. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, London (2016). http://www.cambridge.org/ar/academic/subjects/sociology/sociology-general-interest/social-network-analysis-methods-and-applications

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok Yip Szeto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bu, Q., Szeto, K.Y. (2017). Analysis of Average Communicability in Complex Networks. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics