Skip to main content

Liquid Biopsy in Non-Small Cell Lung Cancer (NSCLC)

  • Chapter
  • First Online:
Liquid Biopsy in Cancer Patients

Abstract

Lung cancer is the leading cause of cancer deaths worldwide. To date, the gold standard for the molecular analysis of a patient affected by NSCLC is the tissue biopsy. The discovery of activating mutations and rearrangements in specific genes has revolutionized the therapeutic approaches of lung cancer over the last years. For this reason, a strict “molecular follow-up” is mandatory to evaluate patient’s disease evolution. Indeed, liquid biopsy has raised as the “new ambrosia of researchers” as it could help clinicians to identify both prognostic and predictive biomarkers in a more accessible way. Liquid biopsy analysis can be used in different moments starting from diagnosis to relapse, earning multiple clinical meanings, offering thus a noninvasive but valid method to detect actionable mutations. Although the implementation of both exosomes and CTCs in clinical practice is several steps back, new advances and discoveries make them, together with the ctDNA, a very promising tool. In the following chapter we will discuss the recent advances of liquid biopsy in NSCLC highlighting the possible clinical utility of CTCs, ctDNA and exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin [Internet]. 2011;61. Available from: http://dx.doi.org/10.3322/caac.20107.

  2. Passiglia F, Bronte G, Castiglia M, Listi A, Calo V, Toia F, et al. Prognostic and predictive biomarkers for targeted therapy in NSCLC: for whom the bell tolls? Expert Opin Biol Ther England. 2015;15(11):1553–66.

    Article  Google Scholar 

  3. Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017 Feb 16;376(7):629-40.

    Google Scholar 

  4. Drizou M, Kotteas EA, Syrigos N. Treating patients with ALK-rearranged non-small-cell lung cancer: mechanisms of resistance and strategies to overcome it. Clin Transl Oncol. Italy; 2017.

    Google Scholar 

  5. Ho C-C, Liao W-Y, Lin C-A, Shih J-Y, Yu C-J, Chih-Hsin Yang J. Acquired BRAF V600E mutation as resistant mechanism after treatment with osimertinib. J Thorac Oncol. United States; 2016.

    Google Scholar 

  6. Kobayashi Y, Azuma K, Nagai H, Kim YH, Togashi Y, Sesumi Y, et al. Characterization of EGFR T790M, L792F, and C797S mutations as mechanisms of acquired resistance to afatinib in lung cancer. Mol Cancer Ther. United States; 2016.

    Google Scholar 

  7. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med [Internet]. Massachusetts Medical Society; 2004;351(27):2817–26. Available from: http://dx.doi.org/10.1056/NEJMoa041588.

  8. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al. American society of clinical oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti–epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol [Internet]. American Society of Clinical Oncology; 2009;27(12):2091–6. Available from: http://ascopubs.org/doi/abs/10.1200/JCO.2009.21.9170.

  9. Kuiper JL, Heideman DAM, Thunnissen E, Paul MA, van Wijk AW, Postmus PE, et al. Incidence of T790M mutation in (sequential) rebiopsies in EGFR-mutated NSCLC-patients. Lung Cancer. Ireland. 2014;85(1):19–24.

    Article  CAS  Google Scholar 

  10. Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, Baggerman G, et al. Liquid biopsies in lung cancer: The new ambrosia of researchers. Biochim Biophys Acta. Elsevier B.V. 2014;1846(2):539–46.

    Google Scholar 

  11. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2014;144(5):646–74. Available from: http://www.sciencedirect.com/science/article/pii/S0092867411001279

    Article  Google Scholar 

  12. Feng H, Wang X, Zhang Z, Tang C, Ye H, Jones L, et al. Identification of genetic mutations in human lung cancer by targeted sequencing. Cancer Inform [Internet]. Libertas Academica. 2015;14:83–93. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489668/

    CAS  Google Scholar 

  13. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature [Internet]. Nature Publishing Group; 2007;448(7153):561–6. Available from: http://dx.doi.org/10.1038/nature05945.

  14. Qian H, Gao F, Wang H, Ma F. The efficacy and safety of crizotinib in the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer: a meta-analysis of clinical trials. BMC Cancer. England. 2014;14:683.

    Article  Google Scholar 

  15. Reck M, van Zandwijk N, Gridelli C, Baliko Z, Rischin D, Allan S, et al. Erlotinib in advanced non-small cell lung cancer: efficacy and safety findings of the global phase IV tarceva lung cancer survival treatment study. J Thorac Oncol [Internet]. 2010;5(10):1616–1622. Available from: http://www.sciencedirect.com/science/article/pii/S1556086415318098.

  16. Rolfo C, Giovannetti E, Hong DS, Bivona T, Raez LE, Bronte G, et al. Novel therapeutic strategies for patients with NSCLC that do not respond to treatment with EGFR inhibitors. Cancer Treat Rev. Netherlands. 2014;40(8):990–1004.

    Article  CAS  Google Scholar 

  17. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. United States. 2010;363(18):1734–9.

    Article  CAS  Google Scholar 

  18. Scheffler M, Merkelbach-Bruse S, Bos M, Fassunke J, Gardizi M, Michels S, et al. Spatial tumor heterogeneity in lung cancer with acquired epidermal growth factor receptor-tyrosine kinase inhibitor resistance: targeting high-level MET-amplification and EGFR T790M mutation occurring at different sites in the same patient. J Thorac Oncol. United States. 2015;10(6):e40–3.

    Article  Google Scholar 

  19. Zhao Q, Wang Z-T, Sun J-L, Han D, An D-Z, Zhang D-K, et al. Intratumoral heterogeneity of subcutaneous nodules in a never-smoker woman of lung squamous cell carcinoma detected on 18F–fluorodeoxyglucose positron emission tomography and computed tomography: a case report. Medicine (Baltimore). United States. 2015;94(21):e851.

    Google Scholar 

  20. Massihnia D, Perez A, Bazan V, Bronte G, Castiglia M, Fanale D, et al. A headlight on liquid biopsies: a challenging tool for breast cancer management. Tumour Biol. Netherlands. 2016;37(4):4263–73.

    Article  CAS  Google Scholar 

  21. Piotrowska Z, Niederst MJ, Karlovich CA, Wakelee HA, Neal JW, Mino-Kenudson M, et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. United States. 2015;5(7):713–22.

    Article  CAS  Google Scholar 

  22. Yu N, Zhou J, Cui F, Tang X. Circulating tumor cells in lung cancer: detection methods and clinical applications. Lung [Internet]. 2015;193(2):157–71. Available from: http://dx.doi.org/10.1007/s00408-015-9697-7

    Article  CAS  Google Scholar 

  23. Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, Matsumoto S, et al. Circulating tumor cell as a diagnostic marker in primary lung cancer. Clin Cancer Res. United States. 2009;15(22):6980–6.

    Article  CAS  Google Scholar 

  24. Wendel M, Bazhenova L, Boshuizen R, Kolatkar A, Honnatti M, Cho EH, et al. Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol. England. 2012;9(1):16005.

    Article  Google Scholar 

  25. Ge M, Shi D, Wu Q, Wang M, Li L. Fluctuation of circulating tumor cells in patients with lung cancer by real-time fluorescent quantitative-PCR approach before and after radiotherapy. J Cancer Res Ther. India. 2005;1(4):221–6.

    Article  CAS  Google Scholar 

  26. Krebs MG, Sloane R, Priest L, Lancashire L, Hou J-M, Greystoke A, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non–small-cell lung cancer. J Clin Oncol [Internet]. American Society of Clinical Oncology. 2011;29(12):1556–63. Available from: http://ascopubs.org/doi/abs/10.1200/JCO.2010.28.7045

    Article  Google Scholar 

  27. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med [Internet]. Massachusetts Medical Society. 2008;359(4):366–77. Available from: http://dx.doi.org/10.1056/NEJMoa0800668

    Article  CAS  Google Scholar 

  28. Punnoose EA, Atwal S, Liu W, Raja R, Fine BM, Hughes BGM, et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res. United States. 2012;18(8):2391–401.

    Article  CAS  Google Scholar 

  29. Tan CL, Lim TH, Lim TK, Tan DS-W, Chua YW, Ang MK, et al. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer. Oncotarget. United States. 2016;7(17):23251–62.

    Article  Google Scholar 

  30. Ilie M, Long E, Butori C, Hofman V, Coelle C, Mauro V, et al. ALK-gene rearrangement: a comparative analysis on circulating tumour cells and tumour tissue from patients with lung adenocarcinoma. Ann Oncol Off J Eur Soc Med Oncol. England. 2012;23(11):2907–13.

    Article  CAS  Google Scholar 

  31. Pailler E, Adam J, Barthelemy A, Oulhen M, Auger N, Valent A, et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J Clin Oncol. United States. 2013;31(18):2273–81.

    Article  Google Scholar 

  32. He W, Xu D, Wang Z, Xiang X, Tang B, Li S, et al. Detecting ALK-rearrangement of CTC enriched by nanovelcro chip in advanced NSCLC patients. Oncotarget. United States; 2016.

    Google Scholar 

  33. Perez-Callejo D, Romero A, Provencio M, Torrente M. Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl lung cancer Res. China; 2016;5(5):455–465.

    Google Scholar 

  34. Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PEY, Van Meerbeeck J, Lardon F, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. Ireland; 2016.

    Google Scholar 

  35. Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. Australia. 2011;32(4):177–95.

    Google Scholar 

  36. Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed [Internet]. BMA House, Tavistock Square, London, WC1H 9JR: BMJ Publishing Group; 2013;98(6):236–8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841808/.

  37. Qian X, Liu J, Sun Y, Wang M, Lei H, Luo G, et al. Circulating cell-free DNA has a high degree of specificity to detect exon 19 deletions and the single-point substitution mutation L858R in non-small cell lung cancer. Oncotarget. United States. 2016;7(20):29154–65.

    Article  Google Scholar 

  38. Luo J, Shen L, Zheng D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci Rep. England. 2014;4:6269.

    Article  CAS  Google Scholar 

  39. Wu Y, Liu H, Shi X, Song Y. Can EGFR mutations in plasma or serum be predictive markers of non-small-cell lung cancer? A meta-analysis. Lung Cancer. Ireland. 2015;88(3):246–53.

    Article  Google Scholar 

  40. Qiu M, Wang J, Xu Y, Ding X, Li M, Jiang F, et al. Circulating tumor DNA is effective for the detection of EGFR mutation in non-small cell lung cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. United States. 2015;24(1):206–12.

    Article  CAS  Google Scholar 

  41. Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O’Connell A, Feeney N, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. United States. 2016;2(8):1014–22.

    Article  Google Scholar 

  42. Reck M, Hagiwara K, Han B, Tjulandin S, Grohe C, Yokoi T, et al. ctDNA determination of EGFR mutation status in European and Japanese patients with advanced NSCLC: the ASSESS study. J Thorac Oncol. United States. 2016;11(10):1682–9.

    Article  Google Scholar 

  43. Villaflor V, Won B, Nagy R, Banks K, Lanman RB, Talasaz A, et al. Biopsy-free circulating tumor DNA assay identifies actionable mutations in lung cancer. Oncotarget. United States. 2016;7(41):66880–91.

    Article  Google Scholar 

  44. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. United States. 2016;22(23):5772–82.

    Article  CAS  Google Scholar 

  45. Chen K-Z, Lou F, Yang F, Zhang J-B, Ye H, Chen W, et al. Circulating tumor DNA detection in early-stage non-small cell lung cancer patients by targeted sequencing. Sci Rep. England. 2016;6:31985.

    Article  CAS  Google Scholar 

  46. Dietz S, Schirmer U, Merce C, von Bubnoff N, Dahl E, Meister M, et al. Low input whole-exome sequencing to determine the representation of the tumor exome in circulating DNA of non-small cell lung cancer patients. PLoS One. United States. 2016;11(8):e0161012.

    Article  Google Scholar 

  47. Wang W, Song Z, Zhang Y. A comparison of ddPCR and ARMS for detecting EGFR T790M status in ctDNA from advanced NSCLC patients with acquired EGFR-TKI resistance. Cancer Med. United States. 2016.

    Google Scholar 

  48. Khozin S, Weinstock C, Blumenthal GM, Cheng J, He K, Zhuang L, et al. Osimertinib for the treatment of metastatic epidermal growth factor T970M positive non-small cell lung cancer. Clin Cancer Res. United States. 2016.

    Google Scholar 

  49. Janne PA, Yang JC-H, Kim D-W, Planchard D, Ohe Y, Ramalingam SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. United States. 2015;372(18):1689–99.

    Article  Google Scholar 

  50. Thress KS, Brant R, Carr TH, Dearden S, Jenkins S, Brown H, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. Ireland. 2015;90(3):509–15.

    Article  Google Scholar 

  51. Greig SL. Osimertinib: first global approval. Drugs. New Zealand. 2016;76(2):263–73.

    CAS  Google Scholar 

  52. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20:1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oxnard GR, Thress KS, Alden RS, Lawrance R, Paweletz CP, Cantarini M, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. United States. 2016;34(28):3375–82.

    Article  CAS  Google Scholar 

  54. Frenel JS, Carreira S, Goodall J, Roda D, Perez-Lopez R, Tunariu N, et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clin Cancer Res. United States. 2015;21(20):4586–96.

    Article  CAS  Google Scholar 

  55. Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ, et al. Corrigendum: circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. England. 2016;7:13513.

    Article  CAS  Google Scholar 

  56. Paweletz CP, Sacher AG, Raymond CK, Alden RS, O’Connell A, Mach SL, et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res. United States. 2016;22(4):915–22.

    Article  CAS  Google Scholar 

  57. Reckamp KL, Melnikova VO, Karlovich C, Sequist LV, Camidge DR, Wakelee H, et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol. United States. 2016;11(10):1690–700.

    Article  Google Scholar 

  58. Giallombardo M, Chacártegui Borrás J, Castiglia M, Van Der Steen N, Mertens I, Pauwels P, et al. Exosomal miRNA analysis in non-small cell lung cancer (NSCLC) patients’ plasma through qPCR: a feasible liquid biopsy tool. J Vis Exp. 2016;111:e53900. Available from: http://www.jove.com/video/53900

    Google Scholar 

  59. Reclusa P, Sirera R, Araujo A, Giallombardo M, Valentino A, Sorber L, et al. Exosomes genetic cargo in lung cancer: a truly Pandora’s box. Transl lung cancer Res. China. 2016;5(5):483–91.

    Article  Google Scholar 

  60. Adi Harel S, Bossel Ben-Moshe N, Aylon Y, Bublik DR, Moskovits N, Toperoff G, et al. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ. England. 2015;22(8):1328–40.

    Article  CAS  Google Scholar 

  61. Yuan D, Xu J, Wang J, Pan Y, Fu J, Bai Y, et al. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget. 2016;7(22):32707–22.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He Y, et al. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res. England. 2016;35:7.

    Article  Google Scholar 

  63. Krug AK, Karlovich C, Koestler T, Brinkmann K, Spiel A, Emenegger J, et al. Abstract B136: plasma EGFR mutation detection using a combined exosomal RNA and circulating tumor DNA approach in patients with acquired resistance to first-generation EGFR-TKIs. Am Assoc Cancer Res [Internet]. Molecular Cancer Therapeutics. 2016;14(12 Supplement 2):B136–.B136. Available from: http://mct.aacrjournals.org/content/14/12_Supplement_2/B136.

  64. Rolfo C, Laes JF, Reclusa P, Valentino A, Lienard M, Gil-Bazo I, et al. P2.01-093 Exo-ALK proof of concept: exosomal analysis of ALK alterations in advanced NSCLC patients. J Thorac Oncol [Internet]. Elsevier. 2017;12(1):S844–5. Available from: http://dx.doi.org/10.1016/j.jtho.2016.11.1145

    Article  Google Scholar 

  65. Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie. Germany. 2013;68(12):969–73.

    CAS  Google Scholar 

  66. Sandfeld-Paulsen B, Aggerholm-Pedersen N, Bæk R, Jakobsen KR, Meldgaard P, Folkersen BH, et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol [Internet]. 2016;10(10):1595–602. Available from: http://www.sciencedirect.com/science/article/pii/S1574789116301235

    Article  CAS  Google Scholar 

  67. Wang LZ, Soo RA, Thuya WL, Wang TT, Guo T, Lau JA, Wong FC, Wong ALA, Lee SC, Sze SK, Goh BC. Exosomal protein FAM3C as a potential novel biomarker for non-small cell lung cancer. J Clin Oncol 32, 2014 (suppl; abstr e22162).

    Google Scholar 

  68. Sandfeld-Paulsen B, Jakobsen KR, Baek R, Folkersen BH, Rasmussen TR, Meldgaard P, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016;11:1701–10.

    Article  PubMed  Google Scholar 

  69. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine Nanotechnology, Biol Med [Internet]. 2016;12(3):655–64. Available from: http://www.sciencedirect.com/science/article/pii/S1549963415002026

    Article  CAS  Google Scholar 

  70. Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res. United States. 2010;70(4):1281–5.

    Article  CAS  Google Scholar 

  71. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med [Internet]. 2005;3(1):1–8. Available from: http://dx.doi.org/10.1186/1479-5876-3-9

    Article  Google Scholar 

  72. Nilsson RJA, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. United States. 2011;118(13):3680–3.

    Google Scholar 

  73. Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. United States. 2015;28(5):666–76.

    Article  CAS  Google Scholar 

  74. Nilsson RJA, Karachaliou N, Berenguer J, Gimenez-Capitan A, Schellen P, Teixido C, et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget. United States. 2016;7(1):1066–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rolfo, C. et al. (2017). Liquid Biopsy in Non-Small Cell Lung Cancer (NSCLC). In: Russo, A., Giordano, A., Rolfo, C. (eds) Liquid Biopsy in Cancer Patients. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55661-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55661-1_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-55659-8

  • Online ISBN: 978-3-319-55661-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics