Skip to main content

Modelling of the Radiation Carcinogenesis: The Analytic and Stochastic Approaches

  • Conference paper
  • First Online:
Extended Abstracts Fall 2015

Part of the book series: Trends in Mathematics ((RPCRMB,volume 7))

Abstract

The paper summarizes the analytic and stochastic approaches to radiation induced carcinogenesis among generic cells population. Many important effects were taken into consideration, like chromosomal aberrations induction, bystander effect, adaptive response effect, etc. The results can be simulated in analytical or Monte Carlo forms that show, e.g., a general probability function for a single cell’s cancer transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “BEIR VII Report (Biological Effects of Ionizing Radiation committee). Health risks from exposure to low levels of ionizing radiation”, Board on Radiation Effects Research, Commision on Life Sciences, National Research Council, National Academy Press, Washington (2006).

    Google Scholar 

  2. “Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies”, IAEA (International Atomic Energy Agency), Safety Standards, Vienna (2011).

    Google Scholar 

  3. M. Avrami, “Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei”, Journal of Chemical Physics 8(2) (1940), 212–224.

    Google Scholar 

  4. M. Avrami, “Kinetics of phase change. III. Granulation, phase change, and microstructure”, Journal of Chemical Physics 9(2) (1941), 177–184.

    Google Scholar 

  5. L.E. Feinendegen, “Low doses of ionizing radiation: relationship between biological benefit and damage induction. A synapsis”, World Journal of Nuclear Medicine 4 (2005).

    Google Scholar 

  6. L.E. Feinendegen, V.P. Bond, and C.A. Sondhaus, “The dual response to low-dose irradiation: induction versus prevention of DNA damage”, in “Biological Effects of Low Dose Radiation”, Elsevier (2000), 3–17.

    Google Scholar 

  7. K.W. Fornalski, “Mechanistic model of the cells irradiation using the stochastic biophysical input”, International Journal of Low Radiation 9(5/6) (2014), 370–395.

    Google Scholar 

  8. K.W. Fornalski, “Biophysical Monte Carlo modelling of irradiated cells”, presentation during LD-RadStats – DoReMi Workshop, CRM, Barcelona, Spain (2015), available at http://www.doremi-noe.net/pdf/events/radstats15/DoReMiRadstats2015_Fornalski.pdf.

  9. K.W. Fornalski, L. Dobrzyński, and M.K. Janiak, “A stochastic Markov model of cellular response to radiation”, Dose-Response 9(4) (2011), 477–496.

    Google Scholar 

  10. S. Gaillard, D. Pusset, S.M. de Toledo, M. Fromm, and E.I. Azzam, “Propagation distance of the \(\propto \)-particle-induced bystander effect: the role of nuclear traversal and gap junction communication”, Radiat Res. 171(5) (2009), 513–520.

    Google Scholar 

  11. A. Knudson, “Mutation and cancer: statistical study of retinoblastoma”, Proc. Natl. Acad. Sci. USA 68(4) (1971), 820–823.

    Google Scholar 

  12. B.E. Leonard, “A review: development of a microdose model for analysis of adaptive response and bystander dose response behavior”, Dose-Response 6 (2008), 113–183.

    Google Scholar 

  13. C. Nordling, “A new theory on cancer-inducing mechanism”, British Journal of Cancer 7(1) (1953), 68–72.

    Google Scholar 

  14. K.M. Prise, M. Folkard, and B.D. Michael, “A review of the bystander effect and its implications for low-dose exposure”, Radiation Protection Dosimetry 104(4) (2003), 347–355.

    Google Scholar 

  15. M.S. Sasaki, “Chromosomal biodosimetry by unfolding a mixed Poisson distribution: a generalized model”, Int. J. Radiat. Biol. 79(2) (2003), 83–97.

    Google Scholar 

  16. K. Sasaki, K. Waku, K. Tsutsumi, A. Itoh, and H. Date, “A simulation study of the radiation-induced bystander effect: modeling with stochastically defined signal reemission”, Computational and Mathematical Methods in Medicine 2012 (2012), 389095.

    Google Scholar 

  17. R.D. Schreiber, J.O. Lloyd, and M.J. Smyth, “Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion”, Science 331 (2011), 1565–1570.

    Google Scholar 

  18. B.R. Scott, J. Hutt, Y. Lin, M.T. Padilla, K.M. Gott, and C.A. Potter, “Biological microdosimetry based on radiation cytotoxicity data”, Radiation Protection Dosimetry  153(4) (2013), 417–424.

    Google Scholar 

  19. M. Stark, “The sandpile model: optimal stress and hormesis”, Dose-Response 10(1) (2012), 66–74.

    Google Scholar 

  20. M. Szłuińska, A.A. Edwards, and D.C. Lloyd, “Statistical methods for biological dosimetry”, Health Protection Agency/Public Health England report no. HPA-RPD-011 (2005).

    Google Scholar 

  21. E.C. Zeeman, “Catastrophe Theory”, Selected Papers 1972–1977. Addison-Wesley Publ. Co. (1977).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Yehoshua Socol and Prof. Marek K. Janiak for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof W. Fornalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fornalski, K.W., Dobrzyński, L., Reszczyńska, J. (2017). Modelling of the Radiation Carcinogenesis: The Analytic and Stochastic Approaches. In: Ainsbury, E., Calle, M., Cardis, E., Einbeck, J., Gómez, G., Puig, P. (eds) Extended Abstracts Fall 2015. Trends in Mathematics(), vol 7. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55639-0_16

Download citation

Publish with us

Policies and ethics