Skip to main content

Synthesis of Five-Membered Heterocycles Through β-Lactam Ring-Expansion Reaction

  • Chapter
  • First Online:
Beta-Lactams

Abstract

The β-lactam ring (2-azetidinone) is found in classical antibiotics such as penicillins and cephalosporins. In addition, this fragment is also detected in compounds with other pharmacological profile, such as antidiabetic, anticancer and cholesterol absorption inhibition among others. Besides, to its biological relevance, the β-lactam ring is a versatile building block for the synthesis of a huge amount of acyclic and cyclic structures by selective fragmentation or rearrangement of each single bond. This chapter is devoted to the synthesis of five-membered heterocycles by ring expansion of β-lactams. The contributions presented in this chapter have been selected from the developments achieved mainly in the last 20 years, in addition to some remarkable early reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Acetyl

AIBN:

2,2′-Azobisisobutyronitrile

Boc:

t-Butoxycarbonyl

CAN:

Cerium(IV) ammonium nitrate

Cbz:

Benzyloxycarbonyl

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE:

1,1-Dichloroethane

DIAD:

Diisopropyl azodicarboxylate

DMF:

N,N-Dimethylformamide

DMP:

Dess-Martin periodinane

DMS:

Dimethylsulfoxide

HMPA:

Hexamethylphosphoramide

IPr:

1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene

Naph:

Naphthyl

NBS:

N-Bromosuccinimide

NIS:

N-Iodosuccinimide

Nu:

Nucleophile

Phth:

Phthaloyl

PMP:

p-Methoxyphenyl

PMB:

p-Methoxybenzyl

PTSA:

p-Toluenesulfonic acid

Py:

Pyridine (pyridyl)

TBACN:

Tetrabutylammonium cyanide

TBCA:

Tribromoisocyanuric acid

TBS:

t-Butyldimethylsilyl

THF:

Tetrahydrofuran

TMS:

Trimethylsilyl

Tph:

2-Thiophenyl

References

  1. Marchand-Brynaert J, Brulé C (2008) Penicillins. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor R (eds) Four-membered heterocycles together with all fused systems containing a four-membered heterocyclic ring. Comprehensive Heterocyclic Chemistry III, vol 2. Elsevier, Oxford, 173–238

    Google Scholar 

  2. Alcaide B, Almendros P, Aragoncillo C (2008) Cephalosporins. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor R (eds) Four-membered heterocycles together with all fused systems containing a four-membered heterocyclic ring. Comprehensive Heterocyclic Chemistry III, vol 2. Elsevier, Oxford, 111–172

    Google Scholar 

  3. Mehta PD, Sengar NPS, Pathak AK (2010) 2-Azetidinone-A new profile of various pharmacological activities. Eur J Med Chem 45:5541–5560

    Article  CAS  Google Scholar 

  4. Banik BK; Banik I; Becker FF (2010) Novel anticancer β-lactams. In: Banik BK (ed) Topics in Heterocyclic Scaffolds I. β-lactams. Springer, Heidelberg, pp 349–373

    Google Scholar 

  5. Ojima I, Zuniga ES, Seitz JD (2013) Advances in the use of enantiopure β-lactams for the synthesis of biologically active compounds of medicinal interests. In: Banik BK (ed) β-Lactams: Unique structures of distincti on for novel molecules. Top Heterocyl Chem, vol 30. Springer-Verlag Berlin Heidelberg, 1–64

    Google Scholar 

  6. Alcaide B, Almendros P, Aragoncillo C (2007) β-Lactams: Versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem Rev 107:4437–4492

    Article  CAS  Google Scholar 

  7. Mo X, Li Q, Ju J (2014) Naturally occurring tetramic acids: isolation, structure elucidation and biological activity. RSC Adv 4:50566–50593

    Article  CAS  Google Scholar 

  8. Schobert R, Schlenk A (2008) Tetramic and tetronic acids: An update on new derivatives and biological aspects. Bioorg Med Chem 16:4203–4221

    Article  CAS  Google Scholar 

  9. Gholap SS (2016) Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 110:13–31

    Article  CAS  Google Scholar 

  10. Robertson J, Stevens K (2014) Pyrrolizidine alkaloids. Nat Prod Rep 31:1721–1788

    Article  CAS  Google Scholar 

  11. Brambilla M, Davies SG, Fletcher AM, Thomson JE (2014) Asymmetric and enantiospecific syntheses of 1-hydroxymethyl pyrrolizidine alkaloids. Tetrahedron Asymmetry 25:387–403

    Article  CAS  Google Scholar 

  12. Palomo C, Cossío FP, Cuevas C, Odriozola JM, Notoria JM (1992) Stereocontrolled synthesis of 3,5-dialkyl-4-amino pyrrolidin-2-ones from β-lactams as chiral templates. Tetrahedron Lett 33:4827–4830

    Article  CAS  Google Scholar 

  13. Jayaraman M, Puranik VG, Bhawal BM (1996) Stereoselective synthesis of homochiral pyrrolidinones and cis, cis-bis-β-lactams from (+)-(1S,2S)-2-amino-1-phenylpropan-1,3-diol. Tetrahedron 52:9005–9016

    Article  CAS  Google Scholar 

  14. Shindo M, Ohtsuki K, Shishido K (2005) Asymmetric inverse electron-demand 1,3-dipolar cycloaddition of ynolates with a chiral nitrone derived from L-serine leading to β-amino acid derivatives. Tetrahedron Asymmetry 16:2821–2831

    Article  CAS  Google Scholar 

  15. Alcaide B, Almendros P, Alonso JM (2004) Synthesis of optically pure functionalized γ-lactams via 2-azetidinone-tethered iminophosphoranes. J Org Chem 69:993–996

    Article  CAS  Google Scholar 

  16. Escalante J, González-Tototzin MA (2003) Synthesis, resolution and absolute configuration of trans 4,5-diphenyl-pyrrolidin-2-one: a possible chiral auxiliary. Tetrahedron Asymmetry 14:981–985

    Article  CAS  Google Scholar 

  17. Park J-H, Ha J-R, Oh S-J, Kim J-A, Shin D-S, Won T-J, Lam Y-F, Ahn C (2005) The stereoselective synthesis of γ-lactam derivatives through N(1)-C(4) one carbon ring expansion of β-lactam derivatives. Tetrahedron Lett 46:1755–1757

    Article  CAS  Google Scholar 

  18. Banfi L, Guanti G, Rasparini M. (2003) Intramolecular opening of β-lactam with amines as a strategy toward enzimatically or photochemically triggered activation of lactenedyine prodrugs. Eur J Org Chem 1319–1336

    Google Scholar 

  19. Fleck TJ, McWhorter WW Jr, DeKam RN, Pearlman BA (2003) Synthesis of N-methyl-N-{(1S)-1-[(3R)-pyrrolidin-3-yl]ethyl}amine. J Org Chem 68:9612–9617

    Article  CAS  Google Scholar 

  20. Van Brabandt W, De Kimpe N (2005) Diastereoselective ring expansion of β-lactams toward γ-lactams via N-acyliminium intermediates. J Org Chem 70:3369–3374

    Article  Google Scholar 

  21. Van Brabandt W, De Kimpe N (2005) Electrophile induced ring expansions of β-lactams towards γ-lactams. J Org Chem 70:8717–8722

    Article  Google Scholar 

  22. Alcaide B, Almendros P, Alonso JM, Aly MF, Pardo C, Saez E, Torres MR (2002) Efficient entry to highly functionalized β-lactams by regio- and stereoselective 1,3-dipolar cycloaddition reaction of 2-azetidinone-tethered nitrones. Synthetic applications. J Org Chem 67:7004–7013

    Article  CAS  Google Scholar 

  23. Gerona-Navarro G, García-López MT, González-Muñiz R (2003) Easy access to orthogonally protected α-alkyl aspartic acid and α-alkyl asparagine derivatives by controlled opening of β-lactams. Tetrahedron Lett 44:6145–6148

    Article  CAS  Google Scholar 

  24. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2005) Organocatalytic ring expansión of β-lactams to γ-lactams through a novel N1–C4 bond cleavage. Direct synthesis of enantiopure succinimide derivatives. Org Lett 7:3981–3984

    Article  CAS  Google Scholar 

  25. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2007) Direct organocatalytic synthesis of enantiopure succinimides from β-lactam aldehydes through ring-expansion promoted by azolium salt precatalysts. Chem Commun 4788–4790

    Google Scholar 

  26. Li G-Q, Dai L-X, You S-L (2007) N-Heterocyclic carbene catalyzed by ring expansion of 4-formyl-β-lactams: Synthesis of succinimide derivatives. Org Lett 9:3519–3521

    Article  CAS  Google Scholar 

  27. Domingo LR, Burell MJ, Arnó M (2009) Understanding the mechanism of the N-heterocyclic carbene-catalyzed ring-expansion of 4-formyl β-lactams to succinimide derivatives. Tetrahedron 65:3432–3440

    Article  CAS  Google Scholar 

  28. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2012) Stereoselective cyanation of 4-formyl and 4-imino-β-lactams: Application to the synthesis of polyfunctionalized γ-lactams. Tetrahedron 68:10761–10768

    Article  CAS  Google Scholar 

  29. Alcaide B, Almendros P, Cabrero G, Ruiz MP (2008) I2-Catalyzed enantioselective ring expansion of β-lactams to γ-lactams through a novel C3–C4 bond cleavage. Direct entry to protected 3,4-dihydroxypyrrolidin-2-one derivatives. Chem Commun 615–617

    Google Scholar 

  30. Alcaide B, Almendros P, Cabrero G, Callejo R, Ruiz MP, Arnó M, Domingo LR (2010) Ring expansion versus cyclization in 4-oxoazetidine-2-carbaldehydes catalyzed by molecular iodine: Experimental and theoretical study in concert. Adv Synth Catal 352:1688–1700

    Article  CAS  Google Scholar 

  31. Alcaide B, Almendros P, Luna A, Torres MR (2010) Divergent reactivity of 2-azetidinone-tethered allenols with electrophilic reagents: controlled ring expansion versus spriocyclization. Adv Synth Catal 352:621–626

    Article  CAS  Google Scholar 

  32. Alcaide B, Almendros P, Luna A, Cembellín S, Arnó M, Domingo LR (2011) Controlled rearrangement of lactam-tethered allenols with brominating reagents: A combined experimental and theoretical study on α-versus β-keto lactam formation. Chem Eur J 17:11559–11566

    Article  CAS  Google Scholar 

  33. Dekeukeleire S, D’hooghe M, Törnroos KW, De Kimpe N (2010) Stereoselective synthesis of chiral 4-(1-chloroalkyl)-β-lactams starting from amino acids and their transformation into functionalized chiral azetidines and pyrrolidines. J Org Chem 75:5934–5940

    Article  CAS  Google Scholar 

  34. Alcaide B, Almendros P, Redondo MC (2006) Domino metal-free allene-β-lactam-based access to functionalized pyrroles. Chem Commun 2616–2618

    Google Scholar 

  35. Alcaide B, Almendros P, Carrascosa R, Redondo MC (2008) New regiocontrolled synthesis of functinalized pyrroles from 2-azetidinone-tethered allenols. Chem Eur J 14:637–643

    Article  CAS  Google Scholar 

  36. Alcaide B, Almendros P, Quirós MT (2011) Accessing skeletal diversity under iron catalysis using substrate control: Formation of pyrroles versus lactones. Adv Synth Catal 353:585–594

    Article  CAS  Google Scholar 

  37. Takahashi M, Atsumi J, Sengoku T, Yoda H (2010) Synthesis of β-amino-functionalized α-exo-methylene-γ-butyrolactones via a β-lactam synthon strategy. Synthesis 3282–3288

    Google Scholar 

  38. Kale AS, Puranik VG, Rakeeb A, Deshmukh AS (2007) A practical formal synthesis of d-(+)-biotin from 4-formylazetidin-2-one. Synthesis 1159–1164

    Google Scholar 

  39. Alcaide B, Aly M, Rodríguez C, Rodríguez-Vicente A (2000) Base-promoted isomerization of cis-4-formyl-2-azetidinones: Chemoselective C4-epimerization vs rearrangement to cyclic enaminones. J Org Chem 65:3453–3459

    Article  CAS  Google Scholar 

  40. Mishra RK, Coates CM, Revell KD, Turos E (2007) Synthesis of 2-oxazolidinones from β-lactams: Stereospecific total synthesis of (-)-cytoxazone and all of its stereoisomers. Org Lett 9:575–578

    Article  CAS  Google Scholar 

  41. Mehra V, Singh P, Kumar V (2012) β-Lactam-synthon-interceded diastereoselective synthesis of functional enriched thioxo-imidazolidines, imidazolidin-2-ones, piperazine-5,6-diones and 4,5-dihydroimidazoles. Tetrahedron 68:8395–8402

    Article  CAS  Google Scholar 

  42. Alcaide B, Martín-Cantalejo Y, Pérez-Castells J, Sierra MA, Monge A (1996) C4, C4′-Bis-β-lactam to fused bis-γ-lactam rearrangement. J Org Chem 61:9156–9163

    Article  CAS  Google Scholar 

  43. Alcaide B, Almendros P, Alonso JM (2006) A practical ruthenium-catalyzed cleavage of the allyl protecting group in amides, lactams, imides, and congeners. Chem Eur J 12:2874–2879

    Article  CAS  Google Scholar 

  44. Palomo C, Aizpurua JM, Cuevas C, Román P, Luque A, Martínez-Ripoll M (1996) A concise route to pyrrolizidine alkaloids bearing the 1,2-amino alcohol functionality Anal Quim 92: 134–135

    Google Scholar 

  45. Dekeukeleire S, D’hooghe M, De Kimpe N (2009) Diastereoselective synthesis of bicyclic γ-lactams via ring-expansion of monocyclic β-lactams. J Org Chem 74:1644–1649

    Article  CAS  Google Scholar 

  46. Alcaide B, Almendros P, Alonso JM, Aly MF (2000) 1,3-Dipolar cycloaddition of 2-azetidinone-tehtered azomethine ylides. Application to the rapid, stereocontrolled synthesis of optically pure highly functionalised pyrrolizidine systems. Chem Commun 485–486

    Google Scholar 

  47. Alcaide B, Almendros P, Alonso JM, Aly MF (2001) Rapid and stereocontrolled synthesis of racemic and optically pure highly functionalized pyrrolizidine systems via rearrangement of 1,3-dipolar cycloadducts derived from 2-azetidinone-tethered azomethine ylides. J Org Chem 66:1351–1358

    Article  CAS  Google Scholar 

  48. Alcaide B, Pardo C, Sáez E (2002) Concise, divergent β-lactam based route to indolizidine and quinolizidine derivatives via sequential region- and stereocontrolled intramolecular nitrone-alkene cycloadditions. Synlett 85–88

    Google Scholar 

  49. Hogan PC, Corey EJ (2005) Proteasome inhibition by a totally synthetic β-lactam related to salinosporamide A and omuralide. J Am Chem Soc 127:15386–15387

    Article  CAS  Google Scholar 

  50. Alcaide B, Almendros P, Alonso JM, Aly MF, Torres MR (2001) Dual behaviour of 2-azetidinone-tethered arylimines as azadienophiles or azadienes. Application to the asymmetric synthesis of indolizidine-type systems. Synlett 1531–1534

    Google Scholar 

  51. Alcaide B, Almendros P, Alonso JM, Aly MF (2003) Useful dual Diles-Alder behavior of 2-azetidinone-tethered aryl imines as azadienophiles or azadienes: A β-lactam based stereocontrolled access to optically pure highly functionalized indolizidine systems. Chem Eur J 9:3415–3416

    Article  CAS  Google Scholar 

  52. Alcaide B, Almendros P, Alonso JM (2003) Ruthenium catalyzed chemoselective N-allyl cleavage: Novel Grubbs carbene mediated deprotection of allylic amines. Chem Eur J 9:5793–5799

    Article  CAS  Google Scholar 

  53. Alcaide B, Almendros P, Fernández I, Martín-Montero R, Martínez-Peña F, Ruiz MP, Torres MR (2015) Gold-catalyzed reactivity reversal of indolizidinone–tethered β-amino allenes controlled by the stereochemistry. ACS Catal 5:4842–4845

    Article  CAS  Google Scholar 

  54. Li G, Huang X, Zhang L (2008) Platinum-catalyzed formation of cyclic-ketone-fused indoles from N-(2-alkynylphenyl)lactams. Angew Chem Int Ed 47:346–349

    Article  CAS  Google Scholar 

  55. Liu L, Wang Y, Zhang L (2012) Formal synthesis of 7-methoxymitosene and synthesis of its analog via a key PtCl2-catalyzed cycloisomerization. Org Lett 14:3736–3739

    Article  CAS  Google Scholar 

  56. Coates RM, MacManus PA (1982) Expeditious synthesis of 2,3-dihydro-1H-pyrrolo[1,2-a]indoles, pyrroloindole quinones, and related hetereocycles via Nenitzescu-type condensation of monoketals with exocyclic enamino esters. J Org Chem 47:4822–4824

    Article  CAS  Google Scholar 

  57. Xing J, Wang XR, Yan CX, Cheng Y (2011) Interaction of β-lactam carbenes with 3,6-diphenyltetrazines: A five-step cascade reaction for the direct construction of indeno[2,1-b]pyrrol-2-ones. J Org Chem 76:4746–4752

    Article  CAS  Google Scholar 

  58. Wang XR, Xing J, Yan CX, Cheng Y (2012) The reaction of β-lactam carbenes with 3,6-dipyridyltetrazines: Switch of reaction pathways by 2-pyridyl and 4-pyridyl substituents of tetrazines. Org Biomol Chem 10:970–977

    Article  CAS  Google Scholar 

  59. Grainger RS, Betou M, Male L, Pitak MB, Coles SJ (2012) Semipinacol rearrangement of cis-fused β-lactam diols into keto-bridged bicyclic lactams. Org Lett 14:2234–2237

    Article  CAS  Google Scholar 

  60. Van Henegouwen WGB, Fieseler RM, Rutjies FPJT, Hiemstra H (2000) First total synthesis of ent-gelsedine via a novel iodide-promoted allene N-acyliminium ion cyclization. J Org Chem 65:8317–8325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benito Alcaide , Pedro Almendros or Cristina Aragoncillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alcaide, B., Almendros, P., Aragoncillo, C. (2017). Synthesis of Five-Membered Heterocycles Through β-Lactam Ring-Expansion Reaction. In: Banik, B. (eds) Beta-Lactams. Springer, Cham. https://doi.org/10.1007/978-3-319-55621-5_6

Download citation

Publish with us

Policies and ethics