Skip to main content

Voltage Control for Wind Power Integration Areas

  • Chapter
  • First Online:
Integration of Large-Scale Renewable Energy into Bulk Power Systems

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 1333 Accesses

Abstract

Accommodating greater levels of penetration of renewable energy sources is an important feature of smart grids. Currently, wind energy is one of the most popular and promise renewable energy sources, and significant wind power integration has already been achieved in electricity grids in a number of countries across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://en.wikipedia.org/wiki/Wind_power_in_the_People’s_Republic_of_China

  2. M. Gang, J. Wang, G. Yan, Cascading trip-off of doubly-fed induction generators from grid at near full-load condition in a wind farm. Autom. Electr. Power Syst. 35(22), 35–40 (2011)

    Google Scholar 

  3. D. Li, L. Jia, X. Xu, et al., Cause and countermeasure analysis on wind turbines’ trip-off from grid. Autom. Electr. Power Syst. 35(22), 41–44 (2011)

    Google Scholar 

  4. X. Ye, Z. Lu, Y. Qiao, et al., A primary analysis on mechanism of large scale cascading trip-off of wind turbine generators. Autom. Electr. Power Syst. 36(8), 35–40 (2012)

    Google Scholar 

  5. J.P. Paul, J.Y. Leost, J.M. Tesseron, Survey of the secondary voltage control in France: present realization and investigations. IEEE Trans. Power Syst. 2, 505–511 (1987)

    Article  Google Scholar 

  6. M. Ilic-Spong, J. Christensen, K.L. Eichorn, Secondary voltage control using pilot point information. IEEE Trans. Power Syst. 3(2), 660–668 (1988)

    Article  Google Scholar 

  7. P. Lagonotte, J.C. Sabonnadiere, J.Y. Leost, J.P. Paul, Structural analysis of the electrical system: application to secondary voltage control in France. IEEE Trans. Power Syst. 4(2), 479–486 (1989)

    Google Scholar 

  8. H. Lefebvre, D. Fragnier, J.Y. Boussion, P. Mallet, M. Bulot, Secondary coordinated voltage control system: feedback of EDF, in Proceedings of the 2000 IEEE Power Engineering Society Summer Meeting, pp. 290–295 (2000)

    Google Scholar 

  9. S. Corsi, M. Pozzi, C. Sabelli, A. Serrani, The coordinated automatic voltage control of the Italian transmission grid—Part I: Reasons of the choice and overview of the consolidated hierarchical system. IEEE Trans. Power Syst. 19(4), 1723–1732 (2004)

    Article  Google Scholar 

  10. S. Corsi, M. Pozzi, M. Sforna, G. Dell’Olio, The coordinated automatic voltage control of the Italian transmission grid—Part II: Control apparatuses and field performance of the consolidated hierarchical system. IEEE Trans. Power Syst. 19(4), 1733–1741 (2004)

    Article  Google Scholar 

  11. H. Sun, Q. Guo, B. Zhang, et al., An adaptive zone-division-based automatic voltage control system with applications in China. IEEE Trans. Power Syst. 28(2), 1816–1828 (2013)

    Google Scholar 

  12. Q. Guo, H. Sun, M. Zhang, J. Tong, B. Zhang, B. Wang, Optimal voltage control of PJM smart transmission grid: study, implementation, and evaluation. IEEE Trans. Smart Grid 4(3), 1665–1674 (2013)

    Article  Google Scholar 

  13. F. Li, W. Qiao, H. Sun, H. Wan, J. Wang, Y. Xia, X. Zhao, P. Zhang, Smart transmission grid: vision and framework. IEEE Trans. Smart Grid 1(2), 168–177 (2010)

    Article  Google Scholar 

  14. K. Torchyan, M.S. Elmoursi, W. Xiao, Adaptive secondary voltage control for grid interface of large scale wind park, in IEEE PowerTech Conferecne, Grenoble, France (2013)

    Google Scholar 

  15. Y. Liu, Z. Chen, Voltage sensitivity based reactive power control on VSC-HVDC in a wind farm connected hybrid multi-infeed HVDC system, in IEEE PowerTech Conferecne, Grenoble, France (2013)

    Google Scholar 

  16. E. Heredia, D. Kosterev, M. Donnelly, Wind hub reactive resource coordination and voltage control study by sequence power flow, in IEEE Power and Energy Society General Meeting, Vancouver, Canada (2013)

    Google Scholar 

  17. T. Zheng, S. Jiao, K. Ding, L. Lin, A coordinated voltage control strategy of wind farms based on sensitivity method, in IEEE PowerTech Conferecne, Grenoble, France (2013)

    Google Scholar 

  18. B. Zhang, H. Zhang, H. Sun, et al., Interaction and coordination between multiple control centers: development and practice, in CIGRE 2006, SC C2 System Control and Operation, SC C2-302

    Google Scholar 

  19. H. Sun, B. Zhang, W. Wu, Q. Guo, Family of energy management system for smart grid, in IEEE PES Innovative Smart Grid Technologies Europe, Berlin, Germany, 13–18 Oct 2012 (2012)

    Google Scholar 

  20. Q. Guo, H. Sun, Y. Liu, et al., Distributed automatic voltage control framework for large-scale wind integration in China, in IEEE Power and Energy Society General Meeting, San Diego, USA (2012)

    Google Scholar 

  21. L. Yuan, J.D. McCalley, Decomposed SCOPF for improving efficiency. IEEE Trans. Power Syst. 24(1), 494–495 (2009)

    Google Scholar 

  22. N. Xiang, S. Wang, E. Yu, An application of estimation-identification approach of multiple bad data in power system state estimation. IEEE Trans. PAS PAS-103(2) (1984)

    Google Scholar 

  23. B.M. Zhang, K.L. Lo, A recursive measurement error estimation identification method for bad data analysis in power system state estimation. IEEE Trans. Power Syst. PWRS-6(1), 191–197 (1991)

    Google Scholar 

  24. G.P. Azevedo, C.S. Souza, B. Feijó, Enhancing the human-computer interface of power system applications. IEEE Trans. Power Syst. 11(2), 646–653 (1996)

    Google Scholar 

  25. T.J. Overbye, J.D. Weber, Visualization of power system data, in Proceedings of the 33rd Hawaii International Conference on System Sciences (2000), pp. 1228–1234

    Google Scholar 

  26. R. Klump, W. Wu, G. Dooley, Displaying aggregate data, interrelated quantities, and data trends in electric power systems, in Proceedings of the 36th Hawaii International Conference on System Sciences (2003)

    Google Scholar 

  27. C. Jia, S. Hongbin, T. Lei, et al., Three-dimensional visualization technique in power system control centers and its real-time applications. Autom. Electr. Power Syst. 32(6), 20–24 (2008) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglai Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guo, Q., Sun, H. (2017). Voltage Control for Wind Power Integration Areas. In: Du, P., Baldick, R., Tuohy, A. (eds) Integration of Large-Scale Renewable Energy into Bulk Power Systems. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-55581-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55581-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55579-9

  • Online ISBN: 978-3-319-55581-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics