Skip to main content

Dissemination of Diffuse Low-Grade Gliomas: Tools and Molecular Insights

  • Chapter
  • First Online:
Diffuse Low-Grade Gliomas in Adults

Abstract

Diffuse low grade diffuse gliomas (DLGGs), which represent approximately 15% of gliomas, are slow-growing tumors (3–4 mm of mean diameter per year) comprising oligodendrogliomas (OG) and astrocytoma (AG). These gliomas are clinically very heterogeneous and their prognosis somewhat unpredictable, making difficult definition of appropriate treatment. Although initially silent, diffuse low-grade gliomas progress into a more aggressive pathology, ultimately causing death of the patient. Their diffusive nature makes them difficult to fully remove by the surgical approach. Understanding the molecular pathways underlying DLGG dissemination would open new lines of treatments aiming at limiting their spread throughout the brain. However, the rare occurrence of these tumors, the difficulties in growing them in culture, and the quasi-absence of DLGG derived cell lines have definitely impeded the progress of knowledge on this topic. This explains the very few data available today on DLGG invasion and calls for more efforts from the scientific community to tackle this complex challenge. Here we present the in vitro/in vivo models and tools for studying DLGG migration and discuss the influence of location, genetics and molecular components driving their dissemination. We also consider data obtained on the migration of normal oligodendrocyte precursor cells as a possible source for guiding our understanding of glioma cell dissemination. Finally, we point out important issues to address in order to move forward on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virchow R. Die krankhaften Geschwülste. Dreissig Vorlesungen, gehalten während des Wintersemesters 1862–1863 an Der Universität Zu Berlin. Berlin: A Hirschwald; 1863.

    Google Scholar 

  2. Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15(7):455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berens ME, Giese A. “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia. 1999;1(3):208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Visted T, Enger PO, Lund-Johansen M, Bjerkvig R. Mechanisms of tumor cell invasion and angiogenesis in the central nervous system. Front Biosci. 2003;8:e289–304.

    Article  CAS  PubMed  Google Scholar 

  5. Gunther W, Skaftnesmo KO, Arnold H, Terzis AJ. Molecular approaches to brain tumour invasion. Acta Neurochir. 2003;145(12):1029–36.

    Article  CAS  PubMed  Google Scholar 

  6. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004;36(6):1046–69.

    Article  CAS  PubMed  Google Scholar 

  7. Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neuro-Oncol. 2004;70(2):217–28.

    Article  Google Scholar 

  8. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME. Molecular targets of glioma invasion. Cell Mol Life Sci. 2007;64(4):458–78.

    Article  CAS  PubMed  Google Scholar 

  9. Salhia B, Tran NL, Symons M, Winkles JA, Rutka JT, Berens ME. Molecular pathways triggering glioma cell invasion. Expert Rev Mol Diagn. 2006;6(4):613–26.

    Article  CAS  PubMed  Google Scholar 

  10. Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007;99(21):1583–93.

    Article  CAS  PubMed  Google Scholar 

  11. Sontheimer H. A role for glutamate in growth and invasion of primary brain tumors. J Neurochem. 2008;105(2):287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp Biol Med (Maywood). 2008;233(7):779–91.

    Article  CAS  Google Scholar 

  13. Tate MC, Aghi MK. Biology of angiogenesis and invasion in glioma. Neurotherapeutics. 2009;6(3):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teodorczyk M, Martin-Villalba A. Sensing invasion: cell surface receptors driving spreading of glioblastoma. J Cell Physiol. 2010;222(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  15. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.

    Article  CAS  PubMed  Google Scholar 

  16. Stoczynska-Fidelus E, Och W, Rieske P, Bienkowski M, Banaszczyk M, Winiecka-Klimek M, et al. Spontaneous in vitro senescence of glioma cells confirmed by an antibody against IDH1R132H. Anticancer Res. 2014;34(6):2859–67.

    CAS  PubMed  Google Scholar 

  17. Kelly JJ, Blough MD, Stechishin OD, Chan JA, Beauchamp D, Perizzolo M, et al. Oligodendroglioma cell lines containing t(1;19)(q10;p10). Neuro-Oncology. 2010;12(7):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luchman HA, Stechishin OD, Dang NH, Blough MD, Chesnelong C, Kelly JJ, et al. An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro-Oncology. 2012;14(2):184–91.

    Article  CAS  PubMed  Google Scholar 

  19. Srikanth M, Kim J, Das S, Kessler JA. BMP signaling induces astrocytic differentiation of clinically derived oligodendroglioma propagating cells. Mol Cancer Res. 2014;12(2):283–94.

    Article  CAS  PubMed  Google Scholar 

  20. Branle F, Lefranc F, Camby I, Jeuken J, Geurts-Moespot A, Sprenger S, et al. Evaluation of the efficiency of chemotherapy in in vivo orthotopic models of human glioma cells with and without 1p19q deletions and in C6 rat orthotopic allografts serving for the evaluation of surgery combined with chemotherapy. Cancer. 2002;95(3):641–55.

    Article  CAS  PubMed  Google Scholar 

  21. Buntinx M, Vanderlocht J, Hellings N, Vandenabeele F, Lambrichts I, Raus J, et al. Characterization of three human oligodendroglial cell lines as a model to study oligodendrocyte injury: morphology and oligodendrocyte-specific gene expression. J Neurocytol. 2003;32(1):25–38.

    Article  CAS  PubMed  Google Scholar 

  22. Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, et al. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003;63(7):1589–95.

    CAS  PubMed  Google Scholar 

  23. Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 2012;26(18):2038–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klink B, Miletic H, Stieber D, Huszthy PC, Campos Valenzuela JA, Balss J, et al. A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1. PLoS One. 2013;8(3):e59773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giese A, Kluwe L, Laube B, Meissner H, Berens ME, Westphal M. Migration of human glioma cells on myelin. Neurosurgery. 1996;38(4):755–64.

    Article  CAS  PubMed  Google Scholar 

  26. Giese A, Laube B, Zapf S, Mangold U, Westphal M. Glioma cell adhesion and migration on human brain sections. Anticancer Res. 1998;18(4A):2435–47.

    CAS  PubMed  Google Scholar 

  27. Oellers P, Schallenberg M, Stupp T, Charalambous P, Senner V, Paulus W, et al. A coculture assay to visualize and monitor interactions between migrating glioma cells and nerve fibers. Nat Protoc. 2009;4(6):923–7.

    Article  CAS  PubMed  Google Scholar 

  28. Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia. 2006;53(8):799–808.

    Article  PubMed  Google Scholar 

  29. Bernstein JJ, Goldberg WJ, Laws Jr ER. Migration of fresh human malignant astrocytoma cells into hydrated gel wafers in vitro. J Neuro-Oncol. 1994;18(2):151–61.

    Article  CAS  Google Scholar 

  30. Colin C, Baeza N, Tong S, Bouvier C, Quilichini B, Durbec P, et al. In vitro identification and functional characterization of glial precursor cells in human gliomas. Neuropathol Appl Neurobiol. 2006;32(2):189–202.

    Article  CAS  PubMed  Google Scholar 

  31. de Bouard S, Christov C, Guillamo JS, Kassar-Duchossoy L, Palfi S, Leguerinel C, et al. Invasion of human glioma biopsy specimens in cultures of rodent brain slices: a quantitative analysis. J Neurosurg. 2002;97(1):169–76.

    Article  PubMed  Google Scholar 

  32. Palfi S, Swanson KR, De Bouard S, Chretien F, Oliveira R, Gherardi RK, et al. Correlation of in vitro infiltration with glioma histological type in organotypic brain slices. Br J Cancer. 2004;91(4):745–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson J, Nowicki MO, Lee CH, Chiocca EA, Viapiano MS, Lawler SE, et al. Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy. Tissue Eng Part C Methods. 2009;15(4):531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kievit FM, Cooper A, Jana S, Leung MC, Wang K, Edmondson D, et al. Aligned chitosan-polycaprolactone polyblend nanofibers promote the migration of glioblastoma cells. Adv Healthc Mater. 2013;2(12):1651–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rao SS, Nelson MT, Xue R, DeJesus JK, Viapiano MS, Lannutti JJ, et al. Mimicking white matter tract topography using core-shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials. 2013;34(21):5181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang C, Tong X, Yang F. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol Pharm. 2014;11(7):2115–25.

    Article  CAS  PubMed  Google Scholar 

  37. Smith CL, Kilic O, Schiapparelli P, Guerrero-Cazares H, Kim DH, Sedora-Roman NI, et al. Migration phenotype of brain-cancer cells predicts patient outcomes. Cell Rep. 2016;15(12):2616–24.

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Agrawal B, Clark PA, Williams JC, Kuo JS. Evaluation of cancer stem cell migration using compartmentalizing microfluidic devices and live cell imaging. J Vis Exp. 2011;58:e3297.

    Google Scholar 

  39. Ricard C, Debarbieux FC. Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment. Front Cell Neurosci. 2014;8:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mariani L, Beaudry C, McDonough WS, Hoelzinger DB, Demuth T, Ross KR, et al. Glioma cell motility is associated with reduced transcription of proapoptotic and proliferation genes: a cDNA microarray analysis. J Neuro-Oncol. 2001;53(2):161–76.

    Article  CAS  Google Scholar 

  41. Scherer HJ. Structural development in gliomas. Am J Cancer. 1938;34:18.

    Google Scholar 

  42. Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc. 1987;62(6):450–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ducray F, Idbaih A, de Reynies A, Bieche I, Thillet J, Mokhtari K, et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer. 2008;7:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Patt S, Labrakakis C, Bernstein M, Weydt P, Cervos-Navarro J, Nisch G, et al. Neuron-like physiological properties of cells from human oligodendroglial tumors. Neuroscience. 1996;71(2):601–11.

    Article  CAS  PubMed  Google Scholar 

  45. Vergani F, Martino J, Goze C, Rigau V, Duffau H. World Health Organization grade II gliomas and subventricular zone: anatomic, genetic, and clinical considerations. Neurosurgery. 2011;68(5):1293–8. discussion 8-9

    Article  PubMed  Google Scholar 

  46. Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, et al. Non-stem cell origin for oligodendroglioma. Cancer Cell. 2010;18(6):669–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen X, Dai J, Jiang T. Supratentorial WHO grade II glioma invasion: a morphologic study using sequential conventional MRI. Br J Neurosurg. 2010;24(2):196–201.

    Article  PubMed  Google Scholar 

  48. Jenkinson MD, du Plessis DG, Smith TS, Joyce KA, Warnke PC, Walker C. Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain J Neurol. 2006;129(Pt 7):1884–91.

    Article  Google Scholar 

  49. Gleize V, Alentorn A, Connen de Kerillis L, Labussiere M, Nadaradjane AA, Mundwiller E, et al. CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas. Ann Neurol. 2015;78(3):355–74.

    Article  CAS  PubMed  Google Scholar 

  50. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164(3):550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.

    Article  CAS  Google Scholar 

  52. Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015;47(5):458–68.

    Article  CAS  PubMed  Google Scholar 

  53. Kamoun A, Idbaih A, Dehais C, Elarouci N, Carpentier C, Letouze E, et al. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas. Nat Commun. 2016;7:11263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Erdem-Eraslan L, Heijsman D, de Wit M, Kremer A, Sacchetti A, van der Spek PJ, et al. Tumor-specific mutations in low-frequency genes affect their functional properties. J Neuro-Oncol. 2015;122(3):461–70.

    Article  CAS  Google Scholar 

  55. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  56. Sahm F, Reuss D, Koelsche C, Capper D, Schittenhelm J, Heim S, et al. Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol. 2014;128(4):551–9.

    Article  CAS  PubMed  Google Scholar 

  57. Hinrichs BH, Newman S, Appin CL, Dunn W, Cooper L, Pauly R, et al. Farewell to GBM-O: genomic and transcriptomic profiling of glioblastoma with oligodendroglioma component reveals distinct molecular subgroups. Acta Neuropathol Commun. 2016;4:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012;124(5):615–25.

    Article  CAS  PubMed  Google Scholar 

  59. Sahm F, Koelsche C, Meyer J, Pusch S, Lindenberg K, Mueller W, et al. CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol. 2012;123(6):853–60.

    Article  CAS  PubMed  Google Scholar 

  60. Varga I, Hutoczki G, Szemcsak CD, Zahuczky G, Toth J, Adamecz Z, et al. Brevican, neurocan, tenascin-C and versican are mainly responsible for the invasiveness of low-grade astrocytoma. Pathol Oncol Res. 2012;18(2):413–20.

    Article  CAS  PubMed  Google Scholar 

  61. Lindberg N, Jiang Y, Xie Y, Bolouri H, Kastemar M, Olofsson T, et al. Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. J Neurosci. 2014;34(44):14644–51.

    Article  PubMed  CAS  Google Scholar 

  62. Wang Y, Hagel C, Hamel W, Muller S, Kluwe L, Westphal M. Trk A, B, and C are commonly expressed in human astrocytes and astrocytic gliomas but not by human oligodendrocytes and oligodendroglioma. Acta Neuropathol. 1998;96(4):357–64.

    Article  CAS  PubMed  Google Scholar 

  63. Liang Y, Bollen AW, Nicholas MK, Gupta N. Id4 and FABP7 are preferentially expressed in cells with astrocytic features in oligodendrogliomas and oligoastrocytomas. BMC Clin Pathol. 2005;5:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Crespin S, Fromont G, Wager M, Levillain P, Cronier L, Monvoisin A, et al. Expression of a gap junction protein, connexin43, in a large panel of human gliomas: new insights. Cancer Med. 2016;5(8):1742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528(7580):93–8.

    CAS  PubMed  Google Scholar 

  66. Hagerstrand D, Smits A, Eriksson A, Sigurdardottir S, Olofsson T, Hartman M, et al. Gene expression analyses of grade II gliomas and identification of rPTPbeta/zeta as a candidate oligodendroglioma marker. Neuro-Oncology. 2008;10(1):2–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Radotra B, McCormick D. Glioma invasion in vitro is mediated by CD44-hyaluronan interactions. J Pathol. 1997;181(4):434–8.

    Article  CAS  PubMed  Google Scholar 

  68. Radotra B, McCormick D. CD44 is involved in migration but not spreading of astrocytoma cells in vitro. Anticancer Res. 1997;17(2A):945–9.

    CAS  PubMed  Google Scholar 

  69. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72.

    CAS  PubMed  Google Scholar 

  70. McDonald JM, Dunlap S, Cogdell D, Dunmire V, Wei Q, Starzinski-Powitz A, et al. The SHREW1 gene, frequently deleted in oligodendrogliomas, functions to inhibit cell adhesion and migration. Cancer Biol Ther. 2006;5(3):300–4.

    Article  CAS  PubMed  Google Scholar 

  71. Naus CC, Aftab Q, Sin WC. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion. Semin Cell Dev Biol. 2016;50:59–66.

    Article  CAS  PubMed  Google Scholar 

  72. Comte I, Kim Y, Young CC, van der Harg JM, Hockberger P, Bolam PJ, et al. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J Cell Sci. 2011;124(Pt 14):2438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Camby I, Belot N, Rorive S, Lefranc F, Maurage CA, Lahm H, et al. Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol. 2001;11(1):12–26.

    Article  CAS  PubMed  Google Scholar 

  74. Verschuere T, De Vleeschouwer S, Lefranc F, Kiss R, Van Gool SW. Galectin-1 and immunotherapy for brain cancer. Expert Rev Neurother. 2011;11(4):533–43.

    Article  CAS  PubMed  Google Scholar 

  75. Baker GJ, Chockley P, Yadav VN, Doherty R, Ritt M, Sivaramakrishnan S, et al. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res. 2014;74(18):5079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Le Mercier M, Fortin S, Mathieu V, Roland I, Spiegl-Kreinecker S, Haibe-Kains B, et al. Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia. 2009;11(5):485–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Rostomily RC, Born DE, Beyer RP, Jin J, Alvord Jr EC, Mikheev AM, et al. Quantitative proteomic analysis of oligodendrogliomas with and without 1p/19q deletion. J Proteome Res. 2010;9(5):2610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, et al. Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 2005;166(3):877–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Avraham HK, Jiang S, Fu Y, Nakshatri H, Ovadia H, Avraham S. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J Pathol. 2014;232(3):369–81.

    Article  CAS  PubMed  Google Scholar 

  80. Silver DJ, Siebzehnrubl FA, Schildts MJ, Yachnis AT, Smith GM, Smith AA, et al. Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. J Neurosci. 2013;33(39):15603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Daumas-Duport C, Varlet P, Tucker ML, Beuvon F, Cervera P, Chodkiewicz JP. Oligodendrogliomas. Part I: patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neuro-Oncol. 1997;34(1):37–59.

    Article  CAS  Google Scholar 

  82. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161(4):803–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin43. Oncogene. 2016;35(12):1504–16.

    Article  CAS  PubMed  Google Scholar 

  84. Oliveira R, Christov C, Guillamo JS, de Bouard S, Palfi S, Venance L, et al. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol. 2005;6(1):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15(15):1913–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Glasgow SM, Zhu W, Stolt CC, Huang TW, Chen F, LoTurco JJ, et al. Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nat Neurosci. 2014;17(10):1322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol. 2015;7(5):a020610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. de Castro F, Bribian A. The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res. 2005;49(2):227–41.

    Article  CAS  Google Scholar 

  89. Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol. 2009;88(1):41–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miyamoto Y, Yamauchi J, Tanoue A. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J Neurosci. 2008;28(33):8326–37.

    Article  CAS  PubMed  Google Scholar 

  91. Yamazaki D, Kurisu S, Takenawa T. Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene. 2009;28(13):1570–83.

    Article  CAS  PubMed  Google Scholar 

  92. Liu J, Zhao Y, Sun Y, He B, Yang C, Svitkina T, et al. Exo70 stimulates the Arp2/3 complex for lamellipodia formation and directional cell migration. Curr Biol. 2012;22(16):1510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kurisu S, Suetsugu S, Yamazaki D, Yamaguchi H, Takenawa T. Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene. 2005;24(8):1309–19.

    Article  CAS  PubMed  Google Scholar 

  94. Iwaya K, Norio K, Mukai K. Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol. 2007;20(3):339–43.

    Article  CAS  PubMed  Google Scholar 

  95. Spassky N, de Castro F, Le Bras B, Heydon K, Queraud-LeSaux F, Bloch-Gallego E, et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci. 2002;22(14):5992–6004.

    CAS  PubMed  Google Scholar 

  96. Karayan-Tapon L, Wager M, Guilhot J, Levillain P, Marquant C, Clarhaut J, et al. Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker? Br J Cancer. 2008;99(7):1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG. Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene. 2009;28(40):3537–50.

    Article  CAS  PubMed  Google Scholar 

  98. Nasarre C, Koncina E, Labourdette G, Cremel G, Roussel G, Aunis D, et al. Neuropilin-2 acts as a modulator of Sema 3A-dependent glioma cell migration. Cell Adhes Migr. 2009;3(4):383–9.

    Article  Google Scholar 

  99. Olivier C, Cobos I, Perez Villegas EM, Spassky N, Zalc B, Martinez S, et al. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development. 2001;128(10):1757–69.

    CAS  PubMed  Google Scholar 

  100. Tchoghandjian A, Baeza-Kallee N, Beclin C, Metellus P, Colin C, Ducray F, et al. Cortical and subventricular zone glioblastoma-derived stem-like cells display different molecular profiles and differential in vitro and in vivo properties. Ann Surg Oncol. 2012;19(Suppl 3):608–19.

    Article  Google Scholar 

  101. Tsai HH, Niu J, Munji R, Davalos D, Chang J, Zhang H, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science. 2016;351(6271):379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pallud J, Varlet P, Devaux B, Geha S, Badoual M, Deroulers C, et al. Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology. 2010;74(21):1724–31.

    Article  CAS  PubMed  Google Scholar 

  103. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol. 2009;118(5):599–601.

    Article  CAS  PubMed  Google Scholar 

  104. Sahm F, Capper D, Jeibmann A, Habel A, Paulus W, Troost D, et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol. 2012;69(4):523–6.

    Article  PubMed  Google Scholar 

  105. Mariani L, McDonough WS, Hoelzinger DB, Beaudry C, Kaczmarek E, Coons SW, et al. Identification and validation of P311 as a glioblastoma invasion gene using laser capture microdissection. Cancer Res. 2001;61(10):4190–6.

    CAS  PubMed  Google Scholar 

  106. Amberger VR, Hensel T, Ogata N, Schwab ME. Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res. 1998;58(1):149–58.

    CAS  PubMed  Google Scholar 

  107. Pernet V, Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 2011;349(1):97–104.

    Article  CAS  Google Scholar 

  108. Belien AT, Paganetti PA, Schwab ME. Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol. 1999;144(2):373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Silbergeld DL, Chicoine MR. Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg. 1997;86(3):525–31.

    Article  CAS  PubMed  Google Scholar 

  110. Burgess PK, Kulesa PM, Murray JD, Alvord Jr EC. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol. 1997;56(6):704–13.

    Article  CAS  PubMed  Google Scholar 

  111. Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME. Dichotomy of astrocytoma migration and proliferation. Int J Cancer. 1996;67(2):275–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Hugnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Leventoux, N., Hassani, Z., Hugnot, JP. (2017). Dissemination of Diffuse Low-Grade Gliomas: Tools and Molecular Insights. In: Duffau, H. (eds) Diffuse Low-Grade Gliomas in Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-55466-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55466-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55464-8

  • Online ISBN: 978-3-319-55466-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics