Skip to main content

Recent Advances in Understanding of the Genetics of Antiphospholipid Syndrome

  • Chapter
  • First Online:
Antiphospholipid Syndrome
  • 1225 Accesses

Abstract

Available evidence supports an inherited risk for the occurrence of antiphospholipid antibodies (aPL), with or without the clinical manifestations associated with antiphospholipid syndrome (APS). Immediate relatives of individuals with APS, whether primary or associated with another autoimmune disease, are more likely to have aPL. Several reports describe multiplex families with APS or APS associated with another autoimmune disorder, and there is a strong association between aPL and APS with specific genes and gene alleles in the major histocompatibility complex. Other genetic risk factors also appear to contribute to the risk of thrombotic events or recurrent pregnancy loss in individuals with aPL. These data suggest that the development of aPL as well as its associated clinical syndrome reflects a complex interplay of inherited and acquired risk factors. Genome-wide studies designed to identify and characterize genes associated with the development of aPL should improve our understanding of this complex autoimmune disorder and regarding which patients with aPL are likely to develop clinical manifestations of the syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey AM, Shulman LE. Connective tissue disease and the chronic biologic false-positive test for syphilis (BFP reaction). Med Clin North Am. 1966;50:1271–9.

    CAS  PubMed  Google Scholar 

  2. Gharavi AE, Mellors RC, Elkon KB. IgG anti-cardiolipin antibodies in murine lupus. Clin Exp Immunol. 1989;78:233–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cabiedes J, Cabral A, Alarcon-Riquelme M, Alarcon-Segovia D. Overt and hidden aCL and antiphosphatidylcholine antibodies in BALB/c and NZB mice. Lupus. 1994;3:340.

    Google Scholar 

  4. Giannakopoulos B, Mirarabshahi P, Qi M, et al. Deletion of the antiphospholipid syndrome autoantigen β2-glycoprotein I potentiates the lupus autoimmune phenotype in a Toll-like receptor 7-mediated murine model. Arthritis Rheumatol. 2014;66:2270–80.

    Article  CAS  PubMed  Google Scholar 

  5. Hashimoto Y, Kawamura M, Ichikawa K, et al. Anticardiolipin antibodies in NZW x BXSB F1 mice. A model of antiphospholipid syndrome. J Immunol. 1992;149:1063–8.

    CAS  PubMed  Google Scholar 

  6. Ahmed SA, Verthelyi D. Antibodies to cardiolipin in normal C57BL/6J mice: induction by estrogen but not dihydrotestosterone. J Autoimmun. 1993;6:265–79.

    Article  CAS  PubMed  Google Scholar 

  7. Anzai K, Nakamura M, Nagafuchi S, et al. Production of anti-cardiolipin antibody in AKR/J mice with streptozocin-induced insulitis and diabetes. Diabetes Res Clin Pract. 1993;20:29–37.

    Article  CAS  PubMed  Google Scholar 

  8. Anzai K, Nagafuchi S, Niho Y, Kikuchi M, Ono J. β2-glycoprotein I-dependent and -independent anticardiolipin antibody in non-obese diabetic (NOD) mice. Clin Exp Immunol. 1998;111:173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carrera-Marin A, Romay-Penabad Z, Papalardo E, et al. C6 knock-out mice are protected from thrombophilia mediated by antiphospholipid antibodies. Lupus. 2012;21:1497–505.

    Article  PubMed  CAS  Google Scholar 

  10. Kato M, Atsumi T, Oku K, et al. The involvement of CD36 in monocyte activation by antiphospholipid antibodies. Lupus. 2013;22:761–71.

    Article  CAS  PubMed  Google Scholar 

  11. Ueki H, Mizushina T, Laoharatchatathanin T, et al. Loss of maternal annexin A5 increases the likelihood of placental platelet thrombosis and foetal loss. Sci Rep. 2012;2:827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Katzav A, Grigoriadis NC, Ebert T, et al. Coagulopathy triggered autoimmunity: experimental antiphospholipid syndrome in factor V Leiden mice. BMC Med. 2013;11:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber M, Hayem G, DeBandt M, et al. The family history of patients with primary or secondary antiphospholipid syndrome (APS). Lupus. 2000;9:258–63.

    Article  CAS  PubMed  Google Scholar 

  14. Schutt M, Kluter H, Hagedorn-Greiwe M, Fehm HL, Wiedemann GJ. Familial coexistence of primary antiphospholipid syndrome and factor VLeiden. Lupus. 1998;7:176–82.

    Article  CAS  PubMed  Google Scholar 

  15. Korte W, Otremba H, Lutz S, Flury R, Schmid L, Weissert M. Childhood stroke at three years of age with transient protein C deficiency, familial antiphospholipid antibodies and F. XII deficiency – a family study. Neuropediatrics. 1994;25:290–4.

    Article  CAS  PubMed  Google Scholar 

  16. Elhajj I, Uthman I, Chahel A, Khoury F, Arayssi T, Taher A. Familial antiphospholipid antibodies and acquired circulating anticoagulants. Lupus. 2004;13:812–4.

    Article  CAS  PubMed  Google Scholar 

  17. Cantalapiedra A, Avello AG, Navarro JL, Cesar JM. Familial occurrence of primary antiphospholipid syndrome. Thromb Res. 1999;95:127–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bansal AS, Hogan PG, Gibbs H, Frazer IH. Familial primary antiphospholipid antibody syndrome. Arthritis Rheum. 1996;39:705–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hellan M, Kuhnel E, Speiser W, Lechner K, Eichinger S. Familial lupus anticoagulant: a case report and review of the literature. Blood Coagul Fibrinolysis. 1998;9:195–200.

    Article  CAS  PubMed  Google Scholar 

  20. Jolidon RM, Knecht H, Humair L, de Torrente A. Different clinical presentations of a lupus anticoagulant in the same family. Klin Wochenschr. 1991;69:340–4.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobson DM, Lewis JH, Bontempo FA, Spero JA, Ragni MV, Reinmuth OM. Recurrent cerebral infarctions in two brothers with antiphospholipid antibodies that block coagulation reactions. Stroke. 1986;17:98–102.

    Article  CAS  PubMed  Google Scholar 

  22. Usugi T, Nakano K, Nakayama T, Ishii K, Osawa M. Familial antiphospholipid antibody in a child with involuntary movement and deterioration. Pediatr Int. 2007;49:238–41.

    Article  PubMed  Google Scholar 

  23. Rouget JP, Goudemand J, Montreuil G, Cosson A, Jaillard J. Lupus anticoagulant: a familial observation. Lancet. 1982;2:105.

    Article  CAS  PubMed  Google Scholar 

  24. Perraudin ML, Rousseau A, Desbois JC, Herrault A, Leveque B. Venous thrombosis, circulating anticoagulant and systemic lupus erythematosus. Two cases reported in two identical HLA sisters (author’s transl). Sem Hop. 1981;57:1913–9.

    CAS  PubMed  Google Scholar 

  25. Matthey F, Walshe K, Mackie IJ, Machin SJ. Familial occurrence of the antiphospholipid syndrome. J Clinical Pathol. 1989;42:495–7.

    Article  CAS  Google Scholar 

  26. Goldberg SN, Conti-Kelly AM, Greco TP. A family study of anticardiolipin antibodies and associated clinical conditions. Am J Med. 1995;99:473–9.

    Article  CAS  PubMed  Google Scholar 

  27. Exner T, Barber S, Kronenberg H, Rickard KA. Familial association of the lupus anticoagulant. Br J Haematol. 1980;45:89–96.

    Article  CAS  PubMed  Google Scholar 

  28. Molta C, Meyer O, Dosquet C, et al. Childhood-onset systemic lupus erythematosus: antiphospholipid antibodies in 37 patients and their first-degree relatives. Pediatrics. 1993;92:849–53.

    CAS  PubMed  Google Scholar 

  29. Mackworth-Young C, Chan J, Harris N, et al. High incidence of anticardiolipin antibodies in relatives of patients with systemic lupus erythematosus. J Rheumatol. 1987;14:723–6.

    CAS  PubMed  Google Scholar 

  30. Mackie IJ, Colaco CB, Machin SJ. Familial lupus anticoagulants. Br J Haematol. 1987;67:359–63.

    Article  CAS  PubMed  Google Scholar 

  31. Frances C, Piette JC. The mystery of Sneddon syndrome: relationship with antiphospholipid syndrome and systemic lupus erythematosus. J Autoimmun. 2000;15:139–43.

    Article  CAS  PubMed  Google Scholar 

  32. Lousa M, Sastre JL, Cancelas JA, Gobernado JM, Pardo A. Study of antiphospholipid antibodies in a patient with Sneddon’s syndrome and her family. Stroke. 1994;25:1071–4.

    Article  CAS  PubMed  Google Scholar 

  33. Pettee AD, Wasserman BA, Adams NL, et al. Familial Sneddon’s syndrome: clinical, hematologic, and radiographic findings in two brothers. Neurology. 1994;44:399–405.

    Article  CAS  PubMed  Google Scholar 

  34. Tily H, Banki K, Hoffman GS, Perl A. Detection of lupus anticoagulant and successful anticoagulation in familial Sneddon syndrome. Ann Rheum Dis. 2010;69:775–6.

    Article  PubMed  Google Scholar 

  35. Ford PM, Brunet D, Lillicrap DP, Ford SE. Premature stroke in a family with lupus anticoagulant and antiphospholipid antibodies. Stroke. 1990;21:66–71.

    Article  CAS  PubMed  Google Scholar 

  36. Mascarenhas R, Santo G, Goncalo M, Ferro MA, Tellechea O, Figueiredo A. Familial Sneddon’s syndrome. Eur J Dermatol. 2003;13:283–7.

    PubMed  Google Scholar 

  37. Goel N, Ortel TL, Bali D, et al. Familial antiphospholipid antibody syndrome: criteria for disease and evidence for autosomal dominant inheritance. Arthritis Rheum. 1999;42:318–27.

    Article  CAS  PubMed  Google Scholar 

  38. Wilson WA, Gharavi AE, Koike T, et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum. 1999;42:1309–11.

    Article  CAS  PubMed  Google Scholar 

  39. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  CAS  PubMed  Google Scholar 

  40. Lozier J, Takahashi N, Putnam FW. Complete amino acid sequence of human plasma β2-glycoprotein I. Proc Natl Acad Sci U S A. 1984;81:3640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinkasserer A, Estaller C, Weiss EH, Sim RB, Day AJ. Complete nucleotide and deduced amino acid sequence of human β2-glycoprotein I. Biochem J. 1991;277(Pt 2):387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mehdi H, Nunn M, Steel DM, et al. Nucleotide sequence and expression of the human gene encoding apolipoprotein H (β2-glycoprotein I). Gene. 1991;108:293–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kamboh MI, Sanghera DK, Mehdi H, et al. Single nucleotide polymorphisms in the coding region of the apolipoprotein H (β2-glycoprotein I) gene and their correlation with the protein polymorphism, anti-β2glycoprotein I antibodies and cardiolipin binding: description of novel haplotypes and their evolution. Ann Hum Genet. 2004;68:285–99.

    Article  CAS  PubMed  Google Scholar 

  44. Sanghera DK, Wagenknecht DR, McIntyre JA, Kamboh MI. Identification of structural mutations in the fifth domain of apolipoprotein H (β2-glycoprotein I) which affect phospholipid binding. Hum Mol Genet. 1997;6:311–6.

    Article  CAS  PubMed  Google Scholar 

  45. Gushiken FC, Arnett FC, Ahn C, Thiagarajan P. Polymorphism of β2-glycoprotein I at codons 306 and 316 in patients with systemic lupus erythematosus and antiphospholipid syndrome. Arthritis Rheum. 1999;42:1189–93.

    Article  CAS  PubMed  Google Scholar 

  46. Camilleri RS, Mackie IJ, Humphries SE, Machin SJ, Cohen H. Lack of association of β2-glycoprotein I polymorphisms Val247Leu and Trp316Ser with antiphospholipid antibodies in patients with thrombosis and pregnancy complications. Br J Haematol. 2003;120:1066–72.

    Article  CAS  PubMed  Google Scholar 

  47. Palomo I, Pereira J, Alarcon M, et al. Val/Leu247 and Trp/Ser316 polymorphisms in β2 glycoprotein I and their association with thrombosis in unselected Chilean patients. Clin Rheumatol. 2007;26:302–7.

    Article  PubMed  Google Scholar 

  48. Pardos-Gea J, Castro-Marrero J, Cortes-Hernandez J, et al. Beta2-glycoprotein I gene polymorphisms Val247Leu and Trp316Ser in Spanish patients with primary antiphospholipid syndrome. Rheumatol Int. 2012;32:927–32.

    Article  CAS  PubMed  Google Scholar 

  49. Yasuda S, Atsumi T, Matsuura E, et al. Significance of valine/leucine247 polymorphism of β2-glycoprotein I in antiphospholipid syndrome: increased reactivity of anti–β2-glycoprotein I autoantibodies to the valine247 β2-glycoprotein I variant. Arthritis Rheum. 2005;52:212–8.

    Article  CAS  PubMed  Google Scholar 

  50. Matsuura E, Igarashi Y, Yasuda T, Triplett DA, Koike T. Anticardiolipin antibodies recognize beta 2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med. 1994;179:457–62.

    Article  CAS  PubMed  Google Scholar 

  51. Atsumi T, Tsutsumi A, Amengual O, et al. Correlation between β2-glycoprotein I valine/leucine247 polymorphism and anti-β2-glycoprotein I antibodies in patients with primary antiphospholipid syndrome. Rheumatology (Oxford). 1999;38:721–3.

    Article  CAS  Google Scholar 

  52. Hirose N, Williams R, Alberts AR, et al. A role for the polymorphism at position 247 of the β2-glycoprotein I gene in the generation of anti-β2-glycoprotein I antibodies in the antiphospholipid syndrome. Arthritis Rheum. 1999;42:1655–61.

    Article  CAS  PubMed  Google Scholar 

  53. Chamorro AJ, Marcos M, Miron-Canelo JA, Cervera R, Espinosa G. Val247Leu beta2-glycoprotein-I allelic variant is associated with antiphospholipid syndrome: systematic review and meta-analysis. Autoimmun Rev. 2012;11:705–12.

    Article  CAS  PubMed  Google Scholar 

  54. Lee YH, Choi SJ, Ji JD, Song GG. Association between the valine/leucine247 polymorphism of β2-glycoprotein I and susceptibility to anti-phospholipid syndrome: a meta-analysis. Lupus. 2012;21:865–71.

    Article  CAS  PubMed  Google Scholar 

  55. Picceli VF, Skare TL, Nisihara RM, Nass FR, Messias-Reason IT, Utiyama SR. BF*F allotype of the alternative pathway of complement: a marker of protection against the development of antiphospholipid antibodies in patients with systemic lupus erythematosus. Lupus. 2016;25:412–7.

    Article  CAS  PubMed  Google Scholar 

  56. Sanghera DK, Manzi S, Bontempo F, Nestlerode C, Kamboh MI. Role of an intronic polymorphism in the PDCD1 gene with the risk of sporadic systemic lupus erythematosus and the occurrence of antiphospholipid antibodies. Hum Genet. 2004;115:393–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ochoa E, Iriondo M, Manzano C, et al. LDLR and PCSK9 are associated with the presence of antiphospholipid antibodies and the development of thrombosis in aPLA carriers. PLoS One. 2016;11:e0146990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Horita T, Atsumi T, Yoshida N, et al. STAT4 single nucleotide polymorphism, rs7574865 G/T, as a risk for antiphospholipid syndrome. Ann Rheum Dis. 2009;68:1366–7.

    Article  CAS  PubMed  Google Scholar 

  59. Svenungsson E, Gustafsson J, Leonard D, et al. A STAT4 risk allele is associated with ischaemic cerebrovascular events and anti-phospholipid antibodies in systemic lupus erythematosus. Ann Rheum Dis. 2010;69:834–40.

    Article  CAS  PubMed  Google Scholar 

  60. Bogdanova N, Baleva M, Kremensky I, Markoff A. The annexin A5 protective shield model revisited: inherited carriage of the M2/ANXA5 haplotype in placenta as a predisposing factor for the development of obstetric antiphospholipid antibodies. Lupus. 2012;21:796–8.

    Article  CAS  PubMed  Google Scholar 

  61. Hiddink L, de Laat B, Derksen RH, de Groot PG, van Heerde WL. Annexin A5 haplotypes in the antiphospholipid syndrome. Thromb Res. 2015;135:417–9.

    Article  CAS  PubMed  Google Scholar 

  62. Karassa FB, Bijl M, Davies KA, et al. Role of the Fcgamma receptor IIA polymorphism in the antiphospholipid syndrome: an international meta-analysis. Arthritis Rheum. 2003;48:1930–8.

    Article  CAS  PubMed  Google Scholar 

  63. Fredi M, Tincani A, Yin H, et al. IRF5 is associated with primary antiphospholipid syndrome, but is not a major risk factor. Arthritis Rheum. 2010;62:1201–2.

    Article  PubMed  Google Scholar 

  64. De Angelis V, Scurati S, Raschi E, et al. Pro-inflammatory genotype as a risk factor for aPL-associated thrombosis: report of a family with multiple anti-phospholipid positive members. J Autoimmun. 2009;32:60–3.

    Article  PubMed  CAS  Google Scholar 

  65. Ruiz-Larranaga O, Migliorini P, Uribarri M, et al. Genetic association study of systemic lupus erythematosus and disease subphenotypes in European populations. Clin Rheumatol. 2016;35:1161–8.

    Article  PubMed  Google Scholar 

  66. Ramos PS, Kelly JA, Gray-McGuire C, et al. Familial aggregation and linkage analysis of autoantibody traits in pedigrees multiplex for systemic lupus erythematosus. Genes Immun. 2006;7:417–32.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Leaves NI, Anderson GG, et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet. 2003;34:181–6.

    Article  CAS  PubMed  Google Scholar 

  68. Juran BD, Hirschfield GM, Invernizzi P, et al. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet. 2012;21:5209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nerup J, Pociot F. A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am J Hum Genet. 2001;69:1301–13.

    Article  CAS  PubMed  Google Scholar 

  70. Ali M, Highet LJ, Lacombe D, et al. A second locus for Aicardi-Goutieres syndrome at chromosome 13q14-21. J Med Genet. 2006;43:444–50.

    Article  CAS  PubMed  Google Scholar 

  71. Ramantani G, Kohlhase J, Hertzberg C, et al. Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutières syndrome. Arthritis Rheum. 2010;62:1469–77.

    Article  CAS  PubMed  Google Scholar 

  72. Rasmussen M, Skullerud K, Bakke SJ, Lebon P, Jahnsen FL. Cerebral thrombotic microangiopathy and antiphospholipid antibodies in Aicardi-Goutieres syndrome – report of two sisters. Neuropediatrics. 2005;36:40–4.

    Article  CAS  PubMed  Google Scholar 

  73. Kamboh MI, Wang X, Kao AH, et al. Genome-wide association study of antiphospholipid antibodies. Autoimmune Dis. 2013;2013:761046.

    PubMed  PubMed Central  Google Scholar 

  74. Muller-Calleja N, Rossmann H, Muller C, et al. Antiphospholipid antibodies in a large population-based cohort: genome-wide associations and effects on monocyte gene expression. Thromb Haemost. 2016;116:115–23.

    Article  PubMed  Google Scholar 

  75. Ochoa E, Iriondo M, Bielsa A, Ruiz-Irastorza G, Estonba A, Zubiaga AM. Thrombotic antiphospholipid syndrome shows strong haplotypic association with SH2B3-ATXN2 locus. PLoS One. 2013;8:e67897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Castro-Marrero J, Balada E, Vilardell-Tarres M, Ordi-Ros J. Genetic risk factors of thrombosis in the antiphospholipid syndrome. Br J Haematol. 2009;147:289–96.

    Article  CAS  PubMed  Google Scholar 

  77. Simantov R, Lo SK, Salmon JE, Sammaritano LR, Silverstein RL. Factor V Leiden increases the risk of thrombosis in patients with antiphospholipid antibodies. Thromb Res. 1996;84:361–5.

    Article  CAS  PubMed  Google Scholar 

  78. Hansen KE, Kong DF, Moore KD, Ortel TL. Risk factors associated with thrombosis in patients with antiphospholipid antibodies. J Rheumatol. 2001;28:2018–24.

    CAS  PubMed  Google Scholar 

  79. Diz-Kucukkaya R, Hancer VS, Artim-Esen B, Pekcelen Y, Inanc M. The prevalence and clinical significance of inherited thrombophilic risk factors in patients with antiphospholipid syndrome. J Thromb Thrombolysis. 2010;29:303–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kaiser R, Barton JL, Chang M, et al. Factor V Leiden and thrombosis in patients with systemic lupus erythematosus: a meta-analysis. Genes Immun. 2009;10:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lincz LF, Adams MJ, Scorgie FE, Thom J, Baker RI, Seldon M. Polymorphisms of the tissue factor pathway inhibitor gene are associated with venous thromboembolism in the antiphospholipid syndrome and carriers of factor V Leiden. Blood Coagul Fibrinolysis. 2007;18:559–64.

    Article  CAS  PubMed  Google Scholar 

  82. Yasuda S, Tsutsumi A, Atsumi T, et al. Gene polymorphisms of tissue plasminogen activator and plasminogen activator inhibitor-1 in patients with antiphospholipid antibodies. J Rheumatol. 2002;29:1192–7.

    CAS  PubMed  Google Scholar 

  83. Vazquez-Del Mercado M, Garcia-Cobian TA, Munoz Valle JF, et al. Genotype Ser413/Ser of PAI-2 polymorphism Ser413/Cys is associated with anti-phospholipid syndrome and systemic lupus erythematosus in a familial case: comparison with healthy controls. Scand J Rheumatol. 2007;36:206–10.

    Article  CAS  PubMed  Google Scholar 

  84. de la Red G, Tassies D, Espinosa G, et al. Factor XIII-A subunit Val34Leu polymorphism is associated with the risk of thrombosis in patients with antiphospholipid antibodies and high fibrinogen levels. Thromb Haemost. 2009;101:312–6.

    PubMed  Google Scholar 

  85. Jimenez S, Tassies D, Espinosa G, et al. Double heterozygosity polymorphisms for platelet glycoproteins Ia/IIa and IIb/IIIa increases arterial thrombosis and arteriosclerosis in patients with the antiphospholipid syndrome or with systemic lupus erythematosus. Ann Rheum Dis. 2008;67:835–40.

    Article  CAS  PubMed  Google Scholar 

  86. Yonal I, Hindilerden F, Hancer VS, et al. The impact of platelet membrane glycoprotein Ib alpha and Ia/IIa polymorphisms on the risk of thrombosis in the antiphospholipid syndrome. Thromb Res. 2012;129:486–91.

    Article  CAS  PubMed  Google Scholar 

  87. Perez-Sanchez C, Barbarroja N, Messineo S, et al. Gene profiling reveals specific molecular pathways in the pathogenesis of atherosclerosis and cardiovascular disease in antiphospholipid syndrome, systemic lupus erythematosus and antiphospholipid syndrome with lupus. Ann Rheum Dis. 2015;74:1441–9.

    Article  CAS  PubMed  Google Scholar 

  88. Vega-Ostertag M, Liu X, Kwan-Ki H, Chen P, Pierangeli S. A human monoclonal antiprothrombin antibody is thrombogenic in vivo and upregulates expression of tissue factor and E-selectin on endothelial cells. Br J Haematol. 2006;135:214–9.

    Article  CAS  PubMed  Google Scholar 

  89. Grenn RC, Yalavarthi S, Gandhi AA, et al. Endothelial progenitor dysfunction associates with a type I interferon signature in primary antiphospholipid syndrome. Ann Rheum Dis. 2017;76:450–7.

    Google Scholar 

  90. Bushati N, Cohen SM. MicroRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  91. Eisenreich A, Leppert U. The impact of microRNAs on the regulation of tissue factor biology. Trends Cardiovasc Med. 2014;24:128–32.

    Article  CAS  PubMed  Google Scholar 

  92. Teruel R, Perez-Sanchez C, Corral J, et al. Identification of miRNAs as potential modulators of tissue factor expression in patients with systemic lupus erythematosus and antiphospholipid syndrome. J Thromb Haemost. 2011;9:1985–92.

    Article  CAS  PubMed  Google Scholar 

  93. Perez-Sanchez C, Aguirre MA, Ruiz-Limon P, et al. Atherothrombosis-associated microRNAs in antiphospholipid syndrome and systemic lupus erythematosus patients. Sci Rep. 2016;6:31375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chung SA, Shum AK. Rare variants, autoimmune disease, and arthritis. Curr Opin Rheumatol. 2016;28:346–51.

    Article  CAS  PubMed  Google Scholar 

  95. Ellyard JI, Jerjen R, Martin JL, et al. Identification of a pathogenic variant in TREX1 in early-onset cerebral systemic lupus erythematosus by whole-exome sequencing. Arthritis Rheum. 2014;66:3382–6.

    Article  CAS  Google Scholar 

  96. Leinoe E, Nielsen OJ, Jonson L, Rossing M. Whole-exome sequencing of a patient with severe and complex hemostatic abnormalities reveals a possible contributing frameshift mutation in C3AR1. Cold Spring Harb Mol Case Stud. 2016;2:a000828.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Panzer S, Pabinger I, Gschwandtner ME, Mayr WR, Hütter D. Lupus anticoagulants: strong association with the major histocompatibility complex class II and platelet antibodies. Br J Haematol. 1997;98:342–5.

    Article  CAS  PubMed  Google Scholar 

  98. Freitas MV, da Silva LM, Deghaide NH, Donadi EA, Louzada-Junior P. Is HLA class II susceptibility to primary antiphospholipid syndrome different from susceptibility to secondary antiphospholipid syndrome? Lupus. 2004;13:125–31.

    Article  CAS  PubMed  Google Scholar 

  99. McHugh NJ, Maddison PJ, Savi M, et al. HLA-DR antigens and anticardiolipin antibodies in patients with systemic lupus erythematosus. Arthritis Rheum. 1989;32:1623–4.

    Article  CAS  PubMed  Google Scholar 

  100. Asherson RA, Doherty DG, Vergani D, Khamashta MA, Hughes GRV. Major histocompatibility complex associations with primary antiphospholipid syndrome. Arthritis Rheum. 1992;35:124–5.

    Article  CAS  PubMed  Google Scholar 

  101. Sanchez ML, Katsumata K, Atsumi T, et al. Association of HLA-DM polymorphism with the production of antiphospholipid antibodies. Ann Rheum Dis. 2004;63:1645–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bertolaccini ML, Atsumi T, Caliz AR, et al. Association of antiphosphatidylserine/prothrombin autoantibodies with HLA class II genes. Arthritis Rheum. 2000;43:683–8.

    Article  CAS  PubMed  Google Scholar 

  103. Caliz R, Atsumi T, Kondeatis E, et al. HLA class II gene polymorphisms in antiphospholipid syndrome: haplotype analysis in 83 Caucasoid patients. Rheumatology (Oxford). 2001;40:31–6.

    Article  CAS  Google Scholar 

  104. Goldstein R, Moulds JM, Smith CD, Sengar DP. MHC studies of the primary antiphospholipid antibody syndrome and of antiphospholipid antibodies in systemic lupus erythematosus. J Rheumatol. 1996;23:1173–9.

    CAS  PubMed  Google Scholar 

  105. Hartung K, Coldewey R, Corvetta A, et al. MHC gene products and anticardiolipin antibodies in systemic lupus erythematosus results of a multicenter study. Autoimmunity. 1992;13:95–9.

    Article  CAS  PubMed  Google Scholar 

  106. Galeazzi M, Sebastiani GD, Tincani A, et al. HLA class II alleles associations of anticardiolipin and anti-β2GPI antibodies in a large series of European patients with systemic lupus erythematosus. Lupus. 2000;9:47–55.

    Article  CAS  PubMed  Google Scholar 

  107. Sebastiani GD, Galeazzi M, Tincani A, et al. HLA-DPB1 alleles association of anticardiolipin and anti-beta2GPI antibodies in a large series of European patients with systemic lupus erythematosus. Lupus. 2003;12:560–3.

    Article  CAS  PubMed  Google Scholar 

  108. Ioannidis JP, Tektonidou MG, Vlachoyiannopoulos PG, et al. HLA associations of anti-beta2 glycoprotein I response in a Greek cohort with antiphospholipid syndrome and meta-analysis of four ethnic groups. Hum Immunol. 1999;60:1274–80.

    Article  CAS  PubMed  Google Scholar 

  109. Savi M, Ferraccioli GF, Neri TM, et al. HLA-DR antigens and anticardiolipin antibodies in northern Italian systemic lupus erythematosus patients. Arthritis Rheum. 1988;31:1568–70.

    Article  CAS  PubMed  Google Scholar 

  110. Sebastiani GD, Lulli P, Passiu G, et al. Anticardiolipin antibodies: their relationship with HLA-DR antigens in systemic lupus erythematosus. Br J Rheumatol. 1991;30:156–7.

    Article  CAS  PubMed  Google Scholar 

  111. Trabace S, Nicotra M, Cappellacci S, et al. HLA-DR and DQ antigens and anticardiolipin antibodies in women with recurrent spontaneous abortions. Am J Reprod Immunol. 1991;26:147–9.

    Article  CAS  PubMed  Google Scholar 

  112. Hashimoto H, Yamanaka K, Tokano Y, et al. HLA-DRB1 alleles and β2 glycoprotein I-dependent anticardiolipin antibodies in Japanese patients with systemic lupus erythematosus. Clin Exp Rheumatol. 1998;16:423–7.

    CAS  PubMed  Google Scholar 

  113. Vargas-Alarcon G, Granados J, Bekker C, Alcocer-Varela J, Alarcón-Segovia D. Association of HLA–DR5 (possibly DRB1*1201) with the primary antiphospholipid syndrome in Mexican patients. Arthritis Rheum. 1995;38:1340–1.

    Article  CAS  PubMed  Google Scholar 

  114. Granados J, Vargas-Alarcón G, Drenkard C, et al. Relationship of anticardiolipin antibodies and antiphospholipid syndrome to HLA-DR7 in Mexican patients with systemic lupus erythematosus (SLE). Lupus. 1997;6:57–62.

    Article  CAS  PubMed  Google Scholar 

  115. Camps MT, Cuadrado MJ, Ocon P, et al. Association between HLA class II antigens and primary antiphospholipid syndrome from the south of Spain. Lupus. 1995;4:51–5.

    Article  CAS  PubMed  Google Scholar 

  116. Wilson WA, Perez MC, Michalski JP, Armatis PE. Cardiolipin antibodies and null alleles of C4 in black Americans with systemic lupus erythematosus. J Rheumatol. 1988;15:1768–72.

    CAS  PubMed  Google Scholar 

  117. Arnett FC, Olsen ML, Anderson KL, Reveille JD. Molecular analysis of major histocompatibility complex alleles associated with the lupus anticoagulant. J Clin Invest. 1991;87:1490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Asherson RA, Fei HM, Staub HL, Khamashta MA, Hughes GR, Fox RI. Antiphospholipid antibodies and HLA associations in primary Sjögren’s syndrome. Ann Rheum Dis. 1992;51:495–8.

    Google Scholar 

  119. Arnett FC, Thiagarajan P, Ahn C, Reveille JD. Associations of anti–β2-glycoprotein I autoantibodies with HLA class II alleles in three ethnic groups. Arthritis Rheum. 1999;42:268–74.

    Article  CAS  PubMed  Google Scholar 

  120. Galeazzi M, Sebastiani GD, Passiu G, et al. HLA-DP genotyping in patients with systemic lupus erythematosus: correlations with autoantibody subsets. J Rheumatol. 1992;19:42–6.

    CAS  PubMed  Google Scholar 

  121. Gulko PS, Reveille JD, Koopman WJ, Burgard SL, Bartolucci AA, Alarcon GS. Anticardiolipin antibodies in systemic lupus erythematosus: clinical correlates, HLA associations, and impact on survival. J Rheumatol. 1993;20:1684–93.

    CAS  PubMed  Google Scholar 

  122. Bhattacharya S, Kendra J, Schiach C. A case study of familial anti–phospholipid syndrome. Clin Lab Haematol. 2002;24:313–6.

    Article  CAS  PubMed  Google Scholar 

  123. Dagenais P, Urowitz MB, Gladman DD, Norman CS. A family study of the antiphospholipid syndrome associated with other autoimmune diseases. J Rheumatol. 1992;19:1393–6.

    CAS  PubMed  Google Scholar 

  124. Hudson N, Busque L, Rauch J, Kassis J, Fortin PR. Familial antiphospholipid syndrome and HLA–DRB gene associations. Arthritis Rheum. 1997;40:1907–8.

    Article  CAS  PubMed  Google Scholar 

  125. Bridey F, Bentolila S, Poirier J, et al. High familial anticardiolipin antibody titer and major histocompatibility complex. Thromb Haemost. 1996;76:1118–9.

    CAS  PubMed  Google Scholar 

  126. Lousa M, Pardo A, Arnaiz-Villena A, Jimenez-Escrig A, Gobernado J. Histocompatibility class I and II antigens in extensive kindred with Sneddon’s syndrome and related hypercoagulation disorders. Hum Immunol. 2007;68:26–9.

    Google Scholar 

  127. May KP, West SG, Moulds J, Kotzin BL. Different manifestations of the antiphospholipid antibody syndrome in a family with systemic lupus erythematosus. Arthritis Rheum. 1993;36:528–33.

    Article  CAS  PubMed  Google Scholar 

  128. Wilson WA, Scopelitis E, Michalski JP, et al. Familial anticardiolipin antibodies and C4 deficiency genotypes that coexist with MHC DQB1 risk factors. J Rheumatol. 1995;22:227–35.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niti Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goel, N., Ortel, T.L. (2017). Recent Advances in Understanding of the Genetics of Antiphospholipid Syndrome. In: Erkan, D., Lockshin, M. (eds) Antiphospholipid Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-55442-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55442-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55440-2

  • Online ISBN: 978-3-319-55442-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics