Skip to main content

Intermittent Fasting and Caloric Restriction: Neuroplasticity and Neurodegeneration

  • Reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

The central nervous system plays a key and important role in regulating dietary energy consumption. Studies in the literature have shown that high calorie intake is deleterious to the physiological function of neurons. On the other hand, low-calorie intake has demonstrated to be beneficial, protecting neurons against harmful effects that could lead to the development of neurodegeneration. This chapter aimed to review the main aspects of dietary energy restriction protocols, such as intermittent fasting and calorie restriction, in relation to neuronal plasticity, cognition, and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid-β peptide

AD:

Alzheimer’s disease

ADAM10:

A disintegrin and metalloproteinase 10

APP:

Amyloid precursor protein

BDNF:

Brain-derived neurotrophic factor

CaM:

Ca2+/calmodulin-sensitive

CNS:

Central nervous system

CR:

Caloric restriction

CREB:

Cyclic AMP response element-binding protein

DAT:

Dopamine active transporter

DER:

Dietary energy restriction

DG:

Dentate gyrus

FOXO:

Forkhead box O

GDNF:

Glial cell line-derived neurotrophic factor

Grp78:

Glucose-regulated protein 78

GLUT3:

Glucose transporter 3

HO1:

Heme oxygenase 1

Hsp70:

Heat-shock protein 70

IF:

Intermittent fasting

LPS:

Lipopolysaccharide

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MWM:

Morris water maze

NF-κB:

Nuclear factor κB

NMDAR:

N-Methyl-D-aspartate receptor

PD:

Parkinson’s disease

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-α

PPARs:

Peroxisome proliferator-activated receptors

ROS:

Reactive oxygen species

SIRT:

Sirtuin

SN:

Substantia nigra

SOD2:

Superoxide dismutase 2

TrkB:

Tropomyosin receptor kinase B

VMAT:

Vesicular monoamine transporter

VTA:

Ventral tegmental area

WHO:

World Health Organization

References

  • Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    Article  CAS  Google Scholar 

  • Al-Shafei AI (2014) Ramadan fasting ameliorates arterial pulse pressure and lipid profile, and alleviates oxidative stress in hypertensive patients. Blood Press 23:160–167

    Article  CAS  Google Scholar 

  • Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625

    Article  CAS  Google Scholar 

  • Bahammam A (2003) Sleep pattern, daytime sleepiness, and eating habits during the month of Ramadan. Sleep Hypnosis 5:165–174

    Google Scholar 

  • Bahammam AS, Alaseem AM, Alzakri AA et al (2013a) The effects of Ramadan fasting on sleep patterns and daytime sleepiness: an objective assessment. J Res Med Sci 18:127–131

    PubMed  PubMed Central  Google Scholar 

  • Bahammam AS, Nashwan S, Hammad O et al (2013b) Objective assessment of drowsiness and reaction time during intermittent Ramadan fasting in young men: a case-crossover study. Behav Brain Funct 9:32

    Article  Google Scholar 

  • Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36:1474–1492

    Article  CAS  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranof BW, Albers RW, Fisher SK, Uhler MD (eds) Basic Neurochemistry. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  CAS  Google Scholar 

  • Devoto A, Lucidi F, Violani C et al (1999) Effects of different sleep reductions on daytime sleepiness. Sleep 22:336–343

    Article  CAS  Google Scholar 

  • Dong W, Wang R, Ma LN et al (2015) Autophagy involving age-related cognitive behavior and hippocampus injury is modulated by different caloric intake in mice. Int J Clin Exp Med 8:11843–11853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drapeau E, Mayo W, Aurousseau C et al (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 100:14385–14390

    Article  CAS  Google Scholar 

  • Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57:195–206

    Article  CAS  Google Scholar 

  • Eckles-Smith K, Clayton D, Bickford P et al (2000) Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res 78:154–162

    Article  CAS  Google Scholar 

  • Farooq A, Herrera CP, Almudahka F et al (2015) A prospective study of the physiological and neurobehavioral effects of Ramadan fasting in preteen and teenage boys. J Acad Nutr Diet 115:889–897

    Article  Google Scholar 

  • Ferreira FR, VBMG S, Lopes EJ et al (2006) Effect of feed restriction on learning, memory and stress of rodents. Biosci J 22:91–97

    Google Scholar 

  • Fontan-Lozano A, Saez-Cassanelli JL, Inda MC et al (2007) Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J Neurosci 27:10185–10195

    Article  CAS  Google Scholar 

  • Gillette-Guyonnet S, Vellas B (2008) Caloric restriction and brain function. Curr Opin Clin Nutr Metab Care 11:686–692

    Article  CAS  Google Scholar 

  • Goldhamer A, Lisle D, Parpia B et al (2001) Medically supervised water-only fasting in the treatment of hypertension. J Manip Physiol Ther 24:335–339

    Article  CAS  Google Scholar 

  • Graff J, Kahn M, Samiei A et al (2013) A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J Neurosci 33:8951–8960

    Article  CAS  Google Scholar 

  • Green MW, Rogers PJ, Elliman NA et al (1994) Impairment of cognitive performance associated with dieting and high levels of dietary restraint. Physiol Behav 55:447–452

    Article  CAS  Google Scholar 

  • Green MW, Elliman NA, Rogers PJ (1995) Lack of effect of short-term fasting on cognitive function. J Psychiatr Res 29:245–253

    Article  CAS  Google Scholar 

  • Halagappa VK, Guo Z, Pearson M et al (2007) Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 26:212–220

    Article  CAS  Google Scholar 

  • Hartman AL, Rubenstein JE, Kossoff EH (2013) Intermittent fasting: a “new” historical strategy for controlling seizures? Epilepsy Res 104:275–279

    Article  Google Scholar 

  • Harvie MN, Pegington M, Mattson MP et al (2011) The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes 35:714–727

    Article  CAS  Google Scholar 

  • Harvie M, Wright C, Pegington M et al (2013) The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutr 110:1534–1547

    Article  CAS  Google Scholar 

  • Horne BD, Muhlestein JB, Anderson JL (2015) Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr 102:464–470

    Article  CAS  Google Scholar 

  • Jeon BT, Heo RW, Jeong EA et al (2016) Effects of caloric restriction on O-GlcNAcylation, Ca(2+) signaling, and learning impairment in the hippocampus of ob/ob mice. Neurobiol Aging 44:127–137

    Article  CAS  Google Scholar 

  • Johnson JB, Summer W, Cutler RG et al (2007) Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med 42:665–674

    Article  CAS  Google Scholar 

  • Kaptan Z, Akgun-Dar K, Kapucu A et al (2015) Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus. Brain Res 1618:194–204

    Article  CAS  Google Scholar 

  • Kennedy C, Sakurada O, Shinohara M et al (1978) Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol 4:293–301

    Article  CAS  Google Scholar 

  • Kishi T, Hirooka Y, Nagayama T et al (2015) Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor: tropomyosin-related kinase B in hippocampus of obesity-induced hypertensive rats. Int Heart J 56:110–115

    Article  Google Scholar 

  • Kjeldsen-Kragh J, Haugen M, Borchgrevink CF et al (1991) Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet 338:899–902

    Article  CAS  Google Scholar 

  • Kuhla A, Lange S, Holzmann C et al (2013) Lifelong caloric restriction increases working memory in mice. PLoS One 8:e68778

    Article  CAS  Google Scholar 

  • Lee J, Duan W, Long JM et al (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15:99–108

    Article  CAS  Google Scholar 

  • Lee J, Duan W, Mattson MP (2002a) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82:1367–1375

    Article  CAS  Google Scholar 

  • Lee J, Seroogy KB, Mattson MP (2002b) Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 80:539–547

    Article  CAS  Google Scholar 

  • Leybaert L, De Bock M, Van Moorhem M et al (2007) Neurobarrier coupling in the brain: adjusting glucose entry with demand. J Neurosci Res 85:3213–3220

    Article  CAS  Google Scholar 

  • Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143

    Article  CAS  Google Scholar 

  • Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192

    Article  CAS  Google Scholar 

  • Ma L, Zhao Z, Wang R et al (2014) Caloric restriction can improve learning ability in C57/BL mice via regulation of the insulin-PI3K/Akt signaling pathway. Neurol Sci 35:1381–1386

    Article  Google Scholar 

  • Marosi K, Mattson MP (2014) BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 25:89–98

    Article  CAS  Google Scholar 

  • Martinet LE, Sheynikhovich D, Benchenane K et al (2011) Spatial learning and action planning in a prefrontal cortical network model. PLoS Comput Biol 7:e1002045

    Article  CAS  Google Scholar 

  • Maswood N, Young J, Tilmont E et al (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:18171–18176

    Article  CAS  Google Scholar 

  • Mattson MP (2002) Brain evolution and lifespan regulation: conservation of signal transduction pathways that regulate energy metabolism. Mech Ageing Dev 123:947–953

    Article  CAS  Google Scholar 

  • Mattson MP (2008a) Dietary factors, hormesis and health. Ageing Res Rev 7:43–48

    Article  Google Scholar 

  • Mattson MP (2008b) Hormesis defined. Ageing Res Rev 7:1–7

    Article  CAS  Google Scholar 

  • Mattson MP (2010) The impact of dietary energy intake on cognitive aging. Front Aging Neurosci 2:5

    PubMed  PubMed Central  Google Scholar 

  • Mattson MP, Duan W, Guo Z (2003) Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. J Neurochem 84:417–431

    Article  CAS  Google Scholar 

  • Means LW, Higgins JL, Fernandez TJ (1993) Mid-life onset of dietary restriction extends life and prolongs cognitive functioning. Physiol Behav 54:503–508

    Article  CAS  Google Scholar 

  • Michalsen A, Schlegel F, Rodenbeck A et al (2003) Effects of short-term modified fasting on sleep patterns and daytime vigilance in non-obese subjects: results of a pilot study. Ann Nutr Metab 47:194–200

    Article  CAS  Google Scholar 

  • Morand-Ferron J, Cole EF, Quinn JL (2016) Studying the evolutionary ecology of cognition in the wild: a review of practical and conceptual challenges. Biol Rev Camb Philos Soc 91:367–389

    Article  Google Scholar 

  • Muller H, De Toledo FW, Resch KL (2001) Fasting followed by vegetarian diet in patients with rheumatoid arthritis: a systematic review. Scand J Rheumatol 30:1–10

    CAS  PubMed  Google Scholar 

  • Palop JJ, Chin J, Mucke LA (2006) Network dysfunction perspective on neurodegenerative diseases. Nature 443:768–773

    Article  CAS  Google Scholar 

  • Patel NV, Gordon MN, Connor KE et al (2005) Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging 26:995–1000

    Article  CAS  Google Scholar 

  • Przedborski S, Vila M, Jackson-Lewis V (2003) Neurodegeneration: what is it and where are we? J Clin Invest 111:3–10

    Article  CAS  Google Scholar 

  • Qasrawi SO, Pandi-Perumal SR, Bahammam AS (2017) The effect of intermittent fasting during Ramadan on sleep, sleepiness, cognitive function, and circadian rhythm. Sleep Breath 21:577

    Article  Google Scholar 

  • Qin W, Chachich M, Lane M et al (2006) Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J Alzheimers Dis 10:417–422

    Article  CAS  Google Scholar 

  • Rashotte ME, Pastukhov IF, Poliakov EL et al (1998) Vigilance states and body temperature during the circadian cycle in fed and fasted pigeons (Columba livia). Am J Phys 275:R1690–R1702

    CAS  Google Scholar 

  • Roky R, Iraki L, Hajkhlifa R et al (2000) Daytime alertness, mood, psychomotor performances, and oral temperature during Ramadan intermittent fasting. Ann Nutr Metab 44:101–107

    Article  CAS  Google Scholar 

  • Roky R, Chapotot F, Benchekroun MT et al (2003) Daytime sleepiness during Ramadan intermittent fasting: polysomnographic and quantitative waking EEG study. J Sleep Res 12:95–101

    Article  Google Scholar 

  • Shettleworth SJ (2009) Cognition, evolution, and behavior. Oxford University Press, Oxford

    Google Scholar 

  • Singh R, Lakhanpal D, Kumar S et al (2012) Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr) 34:917–933

    Article  CAS  Google Scholar 

  • Soares-Simi SL, Pastrello DM, Ferreira ZS et al (2013) Changes in CREB activation in the prefrontal cortex and hippocampus blunt ethanol-induced behavioral sensitization in adolescent mice. Front Integr Neurosci 7:94

    Article  Google Scholar 

  • Tian HH, Aziz AR, Png W et al (2011) Effects of fasting during ramadan month on cognitive function in muslim athletes. Asian J Sports Med 2:145–153

    Article  Google Scholar 

  • Vasconcelos AR, Yshii LM, Viel TA et al (2014) Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 11:85

    Article  Google Scholar 

  • Wang J, Ho L, Qin W et al (2005) Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 19:659–661

    Article  Google Scholar 

  • Waqanivalu T, Nederveen L (2015) Fiscal policies for diet and prevention of noncommunicable diseases. World Health Organization. http://apps.who.int/iris/bitstream/10665/250131/1/9789241511247-eng.pdf?ua=1. Accessed 10 Nov 2017

  • Weindruch R, Sohal RS (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med 337:986–994

    Article  CAS  Google Scholar 

  • Witte AV, Fobker M, Gellner R et al (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106:1255–1260

    Article  CAS  Google Scholar 

  • Wu A, Sun X, Liu Y (2003) Effects of caloric restriction on cognition and behavior in developing mice. Neurosci Lett 339:166–168

    Article  CAS  Google Scholar 

  • Xu BL, Wang R, Ma LN et al (2015) Effects of caloric intake on learning and memory function in juvenile C57BL/6J mice. Biomed Res Int 2015:759803

    PubMed  PubMed Central  Google Scholar 

  • Yuan XZ, Sun S, Tan CC et al (2017) The role of ADAM10 in Alzheimer’s disease. J Alzheimers Dis 58:303–322

    Article  Google Scholar 

  • Zainuddin MS, Thuret S (2012) Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull 103:89–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Mitiko Kawamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vasconcelos, A.R., Orellana, A.M.M., Paixão, A.G., Scavone, C., Kawamoto, E.M. (2019). Intermittent Fasting and Caloric Restriction: Neuroplasticity and Neurodegeneration. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-55387-0_99

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55387-0_99

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55386-3

  • Online ISBN: 978-3-319-55387-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics