Skip to main content

Zinc Deficiency and Stunting

  • Reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

This chapter reviews key aspects of human zinc nutrition providing an insight on the etiology of zinc deficiency and current policies on the assessment of the risk of zinc deficiency in populations using stunting rates and other indicators. Zinc is an essential trace element in human nutrition, and it is critical to various basic molecular functions. Zinc depletion of the organism thus virtually affects any organ system in the human body, and it encompasses a number of diverse biochemical changes resulting in a generalized metabolic dysfunctions. Marginal zinc deficiency mainly occurs when zinc intakes from the diet are inadequate to provide for increased requirements, increased losses, decreased absorption, or decreased utilization. This form of zinc deficiency carries most of the public health significance of zinc deficiency. Marginal zinc deficiency adversely affects physiological, biochemical, and immunological functions. Typical signs are growth retardation, hypogonadism in male adolescents, rough skin, poor appetite, mental lethargy, abnormal dark adaptation, abnormal neurosensory changes, and delayed wound healing. A more severe form of zinc deficiency can be inherited or acquired due to iatrogenic-induced zinc-free diet or severely impaired intestinal uptake. Acrodermatitis enteropathica is a rare autosomal recessive genetic disorder that results in impaired zinc absorption. In population surveys, the risk of zinc deficiency is considered to be elevated and of public health concern when the prevalence of low serum zinc concentrations is greater than 20%, the prevalence of inadequate intakes is greater than 25%, or the prevalence of stunting is at least 20%. In such cases, an intervention to improve population zinc status or increase dietary zinc intake is recommended. Approximately 17.3% of the world’s population are at risk of inadequate intake of absorbable zinc, with the highest risk carried by countries in South and Southeast Asia, sub-Saharan Africa, and Central America. The global mortality burden due to zinc deficiency is of 116,000 deaths per year, the second most important cause of mortality due to micronutrient deficiency after vitamin A deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AE:

Acrodermatitis enteropathica

CI:

Confidence interval

DALY:

Disability-adjusted life year

EAR:

Estimated average requirement

EDTA:

Ethylenediaminetetraacetic acid

EFZ:

Endogenous fecal zinc

FAO:

Food and Agriculture Organization

HAZ:

Height-for-age z-score

IAEA:

International Atomic Energy Association

IL:

Interleukin

IOM:

Institute of Medicine

IZiNCG:

International Zinc Nutrition Consultative Group

PZn:

Plasma/serum zinc

RCT:

Randomized controlled trial

RDA:

Recommended dietary allowance

RR:

Relative risk or rate ratio

SD:

Standard deviation

UFZ:

Unabsorbed fecal zinc

UL:

Tolerable upper level of intake

UNICEF:

United Nations Children’s Emergency Fund

WAZ:

Weight-for-age z-score

WHO:

World Health Organization

WHZ:

Weight-for-height z-score

ZIP:

Gene expressing for a Zip transporter

Zip:

Zinc transporter, transports zinc into the cytoplasm

ZnT:

Zinc transporter, transports zinc out of the cytoplasm

References

  • Allen L, De Benoist B, Hurrell R, Dary O (2006) Guidelines for food fortification with micronutrients. Food and Agriculture Organization/World Health Organization, Rome/Geneva

    Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201

    Article  CAS  PubMed  Google Scholar 

  • Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, Mathers C, Rivera J, Maternal, and Child Undernutrition Study G (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371(9608):243–260

    Article  PubMed  Google Scholar 

  • Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal, and Child Nutrition Study G (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382(9890):427–451

    Article  PubMed  Google Scholar 

  • Brown KH, Rivera JA, Bhutta Z, Gibson RS, King JC, Lonnerdal B, Ruel MT, Sandtrom B, Wasantwisut E, Hotz C (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:91–204

    Google Scholar 

  • Brown KH, Engle-Stone R, Krebs NF, Peerson JM (2009) Dietary intervention strategies to enhance zinc nutrition: promotion and support of breastfeeding for infants and young children. Food Nutr Bull 30(1 Suppl):S144–S171

    Article  PubMed  PubMed Central  Google Scholar 

  • Caulfield LE, Black RE (2004) Zinc deficiency, comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, vol 1. World Health Organization, Geneva

    Google Scholar 

  • Cousins RJ, Leinart AS (1988) Tissue-specific regulation of zinc metabolism and metallothionein genes by interleukin 1. FASEB J 2(13):2884–2890

    Article  CAS  PubMed  Google Scholar 

  • Cousins RJ, Smith KT (1980) Zinc-binding properties of bovine and human milk in vitro: influence of changes in zinc content. Am J Clin Nutr 33(5):1083–1087

    Article  CAS  PubMed  Google Scholar 

  • de Benoist B, Darnton-Hill I, Davidsson L, Fontaine O, Hotz C (2007) Report of a WHO/UNICEF/IAEA/IZiNCG interagency meeting on zinc status indicators, held in IAEA headquarters, Vienna, December 9, 2005. Food Nutr Bull 28:399–483

    Article  Google Scholar 

  • de Onis M, Monteiro C, Akre J, Clugston G (1993) The worldwide magnitude of protein-energy malnutrition–an overview from the who global database on child growth. Bull World Health Organ 71(6):703–712

    PubMed  PubMed Central  Google Scholar 

  • Dibley MJ (2001) Zinc. In: Present knowledge in nutrition. International Life Sciences Institute, pp 329–343

    Google Scholar 

  • Dufner-Beattie J, Kuo YM, Gitschier J, Andrews GK (2004) The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem 279(47):49082–49090

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2014) Scientific opinion on dietary reference values for zinc. European Food Safety Authority (EFSA) panel on dietetic products, Nutrition and Allergies (NDA). EFSA J 12(10):3844

    Article  CAS  Google Scholar 

  • Foster M, Chu A, Petocz P, Samman S (2013) Effect of vegetarian diets on zinc status: a systematic review and meta-analysis of studies in humans. J Sci Food Agric 93(10):2362–2371

    Article  CAS  PubMed  Google Scholar 

  • Gibson RS (1994) Zinc nutrition in developing countries. Nutr Res Rev 7:151–173

    Article  CAS  PubMed  Google Scholar 

  • Gibson RS (2005) Principles of nutritional assessment. Oxford University Press, New York, p 908

    Google Scholar 

  • Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Hambidge M (2000) Human zinc deficiency. J Nutr 130(5 Suppl):1344S–1349S

    Article  CAS  PubMed  Google Scholar 

  • Hess SY (2017) National risk of zinc deficiency as estimated by national surveys. Food Nutr Bull 38(1):3–17

    Article  PubMed  Google Scholar 

  • Holt PR (2007) Intestinal malabsorption in the elderly. Dig Dis 25(2):144–150

    Article  PubMed  Google Scholar 

  • Holt RR, Uriu-Adams JY, Keen CL (2012) Zinc. In: Present knowledge in nutrition. John Wiley & Sons Ltd, Hoboken, USA, pp 521–539

    Google Scholar 

  • IOM (2006) Dietary reference intakes: The essential guide to nutrient requirements. Institute of Medicine. National Academy Press, Washington, USA

    Google Scholar 

  • Iyengar GV (1998) Reevaluation of the trace element content in reference man. Radiat Phys Chem 51(4–6):545–560

    Article  CAS  Google Scholar 

  • King JC (2010) Does zinc absorption reflect zinc status? Int J Vitam Nutr Res 80(4–5):300–306

    Article  CAS  PubMed  Google Scholar 

  • King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94(2):679S–684S

    Article  PubMed  PubMed Central  Google Scholar 

  • King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130(5 Suppl):1360–1366

    Article  Google Scholar 

  • Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130(5 Suppl):1374–1377

    Article  Google Scholar 

  • Lonnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130(5 Suppl):1378S–1383S

    Article  CAS  PubMed  Google Scholar 

  • Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr 89(6):2040–2051

    Article  CAS  Google Scholar 

  • Maret W (2006) Protein interface zinc sites: the role of zinc in the supramolecular assembly of proteins and in transient protein–protein interactions. In: Handbook of metalloproteins, John Wiley & Sons Ltd

    Google Scholar 

  • Maret W (2013) Zinc and human disease. Met Ions Life Sci 13:389–414

    Article  PubMed  Google Scholar 

  • Maverakis E, Fung MA, Lynch PJ, Draznin M, Michael DJ, Ruben B, Fazel N (2007) Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol 56(1):116–124

    Article  PubMed  Google Scholar 

  • Miller LV, Krebs NF, Hambidge KM (2013) Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption. Br J Nutr 109(4):695–700

    Article  CAS  PubMed  Google Scholar 

  • Nriagu JO (2011) Zinc deficiency in human health. In: Encyclopedia of environmental health. Elsevier, Oxford, UK, pp 789–800

    Google Scholar 

  • Prasad AS (1991) Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 53(2):403–412

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4(2):176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31(4):532–546

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS, Miale A Jr, Farid Z, Sandstead HH, Schulert AR, Darby WJ (1963a) Biochemical studies on dwarfism, hypogonadism, and anemia. Arch Intern Med 111:407–428. Abstract

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS, Schulert AR, Miale A Jr, Farid Z, Sandstead HH (1963b) Zinc and iron deficiencies in male subjects with dwarfism and hypogonadism but without ancylostomiasis, schistosomiasis or severe anemia. Am J Clin Nutr 12:437–444

    CAS  PubMed  Google Scholar 

  • Salle A, Demarsy D, Poirier AL, Lelievre B, Topart P, Guilloteau G, Becouarn G, Rohmer V (2010) Zinc deficiency: a frequent and underestimated complication after bariatric surgery. Obes Surg 20(12):1660–1670

    Article  PubMed  Google Scholar 

  • Solomons NW (1986) Competitive interaction of iron and zinc in the diet: consequences for human nutrition. J Nutr 116(6):927–935

    Article  CAS  PubMed  Google Scholar 

  • Swanson CA, King JC (1987) Zinc and pregnancy outcome. Am J Clin Nutr 46(5):763–771

    Article  CAS  PubMed  Google Scholar 

  • Tuerk MJ, Fazel N (2009) Zinc deficiency. Curr Opin Gastroenterol 25(2):136–143

    Article  CAS  PubMed  Google Scholar 

  • Vanwouwe JP (1989) Clinical and laboratory diagnosis of acrodermatitis-enteropathica. Eur J Pediatr 149(1):2–8

    Article  CAS  Google Scholar 

  • Wang X, Zhou B (2010) Dietary zinc absorption: a play of zips and ZnTs in the gut. IUBMB Life 62(3):176–182

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71(1):66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weismann K (1986) Chelating drugs and zinc. Dan Med Bull 33(4):208–211

    CAS  PubMed  Google Scholar 

  • Weismann K, Hoe S, Knudsen L, Sorensen SS (1979) 65-zinc absorption in patients suffering from acrodermatitis enteropathica and in normal adults assessed by whole-body counting technique. Br J Dermatol 101(5):573–579

    Article  CAS  PubMed  Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7(11):e50568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wessells KR, Singh GM, Brown KH (2012) Estimating the global prevalence of inadequate zinc intake from national food balance sheets: effects of methodological assumptions. PLoS One 7(11):e50565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee, World Health Organ Tech Rep Ser, vol 854. World Health Organization, Geneva

    Google Scholar 

  • WHO (2006) Child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age–methods and development. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • WHO/FAO/IAEA (1996) Trace elements in human nutrition and health. World Health Organization (WHO)/Food Agricultural Organization/International Atomic Energy Agency, Geneva/Rome/Vienna

    Google Scholar 

  • van Wouwe JP (1995) Clinical and laboratory assessment of zinc deficiency in Dutch children. A Rev: Biol Trace Elem Res 49(2–3):211–225

    Google Scholar 

  • Wuehler SE, Peerson JM, Brown KH (2005) Use of national food balance data to estimate the adequacy of zinc in national food supplies: methodology and regional estimates. Public Health Nutr 8(7):812–819

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Galetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Galetti, V. (2019). Zinc Deficiency and Stunting. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-55387-0_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55387-0_93

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55386-3

  • Online ISBN: 978-3-319-55387-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics