Skip to main content

Lipid Response to Amino Acid Starvation in Fat Cells: Role of FGF21

  • Reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

Adaptation to food shortage requires temporal homeostatic adaptive responses to a condition of energy deficiency. Mammals have developed a wide range of mechanisms to detect and respond to episodes of malnutrition and starvation, including the capacity to adjust fuel oxidation in function of nutrient availability. Nutrient deprivation or starvation often correlates with amino acid deficiency. This chapter will outline the changes in the metabolic patterns and molecular mechanisms driving these adaptive responses at the whole body level, and particularly in white and brown adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAR:

Amino-acid response

ATF4:

Activating transcription factor 4

BAT:

Brown adipose tissue

DIO:

Diet induced obesity

DIO2:

Iodothyronine deiodinase 2

eIF2:

Eukaryotic initiation factor 2

ERK:

Extracellular regulated kinase

FA:

Fatty acids

FASN:

Fatty acid synthase

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

FRS2:

Fibroblast growth factor receptor substrate 2

GCN2:

General control nonderepressible 2

GLUT1:

Glucose transporter 1

HCD:

High carbohydrate diet

HSL:

Hormone sensitive lipase

KD:

Ketogenic diet

KLB:

Beta klotho

LPD:

Low protein diet

mTOR:

Mammalian target of rapamicine

NRF2:

Nuclear respiratory factor

PERK:

Protein kinase R-like endoplasmic reticulum kinase

PGC1:

PPAR gamma coactivator 1

PPAR:

Peroxisome proliferator activated receptor

SLC6A19:

Solute carrier family 6 member 19

SREBP:

Steroid response element binding protein

TSC1:

Tuberous sclerosis complex

UCP1:

Uncoupling protein 1

UTR:

Untranslated region

WAT:

White adipose tissue

References

  • Ables GP et al (2012) Methionine-restricted C57BL/6J mice are resistant to diet-induced obesity and insulin resistance but have low bone density. PLoS One 7(12):e51357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony TG et al (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279(35):36553–36561

    CAS  PubMed  Google Scholar 

  • Arner P et al (2008) FGF21 attenuates lipolysis in human adipocytes – a possible link to improved insulin sensitivity. FEBS Lett 582(12):1725–1730

    CAS  PubMed  Google Scholar 

  • Bernardo B et al (2015) FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep 5:11382

    PubMed  PubMed Central  Google Scholar 

  • Bielohuby M et al (2011) Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein. Am J Physiol Endocrinol Metab 300(1):E65–E76

    CAS  PubMed  Google Scholar 

  • Camporez JP et al (2013) Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154(9):3099–3109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chartoumpekis DV et al (2011) Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 17(7–8):736–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y et al (2010) Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue. Diabetes 59(1):17–25

    CAS  PubMed  Google Scholar 

  • Cornu M et al (2014) Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proc Natl Acad Sci U S A 111(32):11592–11599

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443(1):165–171

    PubMed  Google Scholar 

  • De Sousa-Coelho AL et al (2013) FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 54(7):1786–1797

    PubMed  PubMed Central  Google Scholar 

  • Ding X et al (2012) βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16(3):387–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domouzoglou EM, Maratos-Flier E (2011) Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr 93(4):901S–9015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutchak PA et al (2012) Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of Thiazolidinediones. Cell 148(3):556–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher FM, Maratos-Flier E (2016) Understanding the physiology of FGF21. Annu Rev Physiol 78:223–241

    CAS  PubMed  Google Scholar 

  • Fisher FM et al (2012) FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26(3):271–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Cavener DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5(2):103–114

    CAS  PubMed  Google Scholar 

  • Hao S et al (2005) Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307(5716):1776–1778

    CAS  PubMed  Google Scholar 

  • Holland WL et al (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17(5):790–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hondares E et al (2010) Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 11(3):206–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hondares E et al (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286(15):12983–12990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta Y et al (2009) Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150(10):4625–4633

    CAS  PubMed  Google Scholar 

  • Inagaki T et al (2007) Endocrine regulation of the fasting response by PPARalphaMediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425

    CAS  PubMed  Google Scholar 

  • Jiang Y et al (2015) Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab 4(5):406–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kharitonenkov A et al (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6):1627–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab TEM 20(9):436–443

    CAS  PubMed  Google Scholar 

  • Laeger T et al (2014) FGF21 is an endocrine signal of protein restriction. J Clin Invest 124(9):3913–3922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laeger T et al (2016) Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Rep 16(3):707–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lees EK et al (2014) Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21. Aging Cell 13(5):817–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2009) Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice. FEBS Lett 583(19):3230–3234

    CAS  PubMed  Google Scholar 

  • Lin Z et al (2013) Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17(5):779–789

    CAS  PubMed  Google Scholar 

  • Morrison CD, Laeger T (2015) Protein-dependent regulation of feeding and metabolism. Trends Endocrinol Metab 26(5):256–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muise ES et al (2008) Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol 74(2):403–412

    CAS  PubMed  Google Scholar 

  • Ozaki Y et al (2015) Rapid increase in fibroblast growth factor 21 in protein malnutrition and its impact on growth and lipid metabolism. Br J Nutr 114(9):1410–1418

    CAS  PubMed  Google Scholar 

  • Pérez-Martí A et al (2017) A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21). Mol Nutr Food Res 61(8)

    Google Scholar 

  • Pezeshki A et al (2016) Low protein diets produce divergent effects on energy balance. Sci Rep 6:25145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu H et al (2001) The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO J 20(6):1425–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reitman ML (2007) FGF21: a missing link in the biology of fasting. Cell Metab 5(6):405–407

    CAS  PubMed  Google Scholar 

  • Samms RJ et al (2015) Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep 11(7):991–999

    CAS  PubMed  Google Scholar 

  • Shan J et al (2009) Elevated ATF4 expression, in the absence of other signals, is sufficient for transcriptional induction via CCAAT enhancer-binding protein-activating transcription factor response elements. J Biol Chem 284(32):21241–21248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu N et al (2015) A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat Commun 6:6693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stone KP et al (2014) Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63(11):3721–3733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Véniant MM et al (2015) Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell Metab 21(5):731–738

    PubMed  Google Scholar 

  • Wanders D et al (2016) Role of GCN2-independent signaling through a Noncanonical PERK/NRF2 pathway in the physiological responses to dietary methionine restriction. Diabetes 65(6):1499–1510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wanders D et al (2017) FGF21 mediates the thermogenic and insulin-sensitizing effects of dietary methionine restriction but not its effects on hepatic lipid metabolism. Diabetes 66(4):858-867

    Google Scholar 

  • Wilson GJ et al (2015) GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment. Am J Physiol Endocrinol Metab 308(4):E283–E293

    CAS  PubMed  Google Scholar 

  • Yang C et al (2012) Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 7(3)

    Google Scholar 

  • Zhang Y et al (2011) The link between fibroblast growth factor 21 and sterol regulatory element binding protein 1c during lipogenesis in hepatocytes. Mol Cell Endocrinol 342(1–2):41–47

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Relat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pérez-Martí, A., Marrero, P.F., Haro, D., Relat, J. (2019). Lipid Response to Amino Acid Starvation in Fat Cells: Role of FGF21. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-55387-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55387-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55386-3

  • Online ISBN: 978-3-319-55387-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics