Skip to main content

Abstract

The theory of lacunary series starts with Weierstrass’ famous example (1872) of a continuous, nondifferentiable function and now we have a wide and nearly complete theory of lacunary subsequences of classical orthogonal systems, as well as asymptotic results for thin subsequences of general function systems. However, many applications of lacunary series in harmonic analysis, orthogonal function theory, Banach space theory, etc. require uniform limit theorems for such series, i.e., theorems holding simultaneously for a class of lacunary series, and such results are much harder to prove than dealing with individual series. The purpose of this paper is to give a survey of uniformity theory of lacunary series and discuss new results in the field. In particular, we study the permutation-invariance of lacunary series and their connection with Diophantine equations, uniform limit theorems in Banach space theory, resonance phenomena for lacunary series, lacunary sequences with random gaps, and the metric discrepancy theory of lacunary sequences.

Dedicated to Professor Robert Tichy on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is meant as \(\lim _{n\rightarrow \infty }\mathbb{E}(X_{n}Y ) = 0\) for all YL q where 1∕p + 1∕q = 1. This convergence should not be confused with weak convergence of probability distributions, also called convergence in distribution.

References

  1. C. Aistleitner, Irregular discrepancy behavior of lacunary series II. Monatsh. Math. 161, 255–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Aistleitner, On the law of the iterated logarithm for the discrepancy of lacunary sequences. Trans. Am. Math. Soc. 362, 5967–5982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Aistleitner, I. Berkes, On the central limit theorem for f(n k x). Prob. Theory Rel. Fields 146, 267–289 (2010)

    Article  MATH  Google Scholar 

  4. C. Aistleitner, I. Berkes, Probability and metric discrepancy theory. Stochastics Dyn. 11, 183–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Aistleitner, I. Berkes, Limit distributions in metric discrepancy theory. Monatsh. Math. 169, 253–265 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Aistleitner, I. Berkes, R. Tichy, On permutations of Hardy-Littlewood-Pólya sequences. Trans. Am. Math. Soc. 363, 6219–6244 (2011)

    Article  MATH  Google Scholar 

  7. C. Aistleitner, I. Berkes, R. Tichy, On the asymptotic behavior of weakly lacunary sequences. Proc. Am. Math. Soc. 139, 2505–2517 (2011)

    Article  MATH  Google Scholar 

  8. C. Aistleitner, I. Berkes, R. Tichy, On permutations of lacunary series. RIMS Kokyuroku Bessatsu B 34, 1–25 (2012)

    MathSciNet  MATH  Google Scholar 

  9. C. Aistleitner, I. Berkes, R. Tichy, On the system f(nx) and probabilistic number theory, in Anal. Probab. Methods Number Theory, Vilnius, 2012, ed. by E. Manstavicius et al., pp. 1–18

    Google Scholar 

  10. C. Aistleitner, I. Berkes, R. Tichy, On the law of the iterated logarithm for permuted lacunary sequences. Proc. Steklov Inst. Math. 276, 3–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. D.J. Aldous, Limit theorems for subsequences of arbitrarily-dependent sequences of random variables. Z. Wahrsch. verw. Gebiete 40, 59–82 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. D.J. Aldous, Subspaces of L 1 via random measures. Trans. Am. Math. Soc. 267, 445–463 (1981)

    MathSciNet  MATH  Google Scholar 

  13. F. Amoroso, E. Viada, Small points on subvarieties of a torus. Duke Math. J. 150, 407–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Berkes, A central limit theorem for trigonometric series with small gaps. Z. Wahrsch. verw. Gebiete 47, 157–161 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Berkes, On almost symmetric sequences in L p . Acta Math. Hung. 54, 269–278 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Berkes, Nongaussian limit distributions of lacunary trigonometric series. Can. J. Math. 43, 948–959 (1991)

    Article  MATH  Google Scholar 

  17. I. Berkes, E. Péter, Exchangeable random variables and the subsequence principle. Prob. Theory Rel. Fields 73, 395–413 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Berkes, M. Raseta, On the discrepancy and empirical distribution function of {n k α}. Unif. Distr. Theory 10, 1–17 (2015)

    MathSciNet  MATH  Google Scholar 

  19. I. Berkes, M. Raseta, On trigonometric sums with random frequencies, Preprint 2016

    Google Scholar 

  20. I. Berkes, H.P. Rosenthal, Almost exchangeable sequences of random variables. Z. Wahrsch. verw. Gebiete 70, 473–507 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Berkes, R. Tichy, On permutation-invariance of limit theorems. J. Complexity 31, 372–379 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Berkes, R. Tichy, Lacunary series and stable distributions, in Mathematical Statistics and Limit Theorems. Festschrift for P. Deheuvels, ed. by M. Hallin, D.M. Mason, D. Pfeifer, J. Steinebach (Springer, Berlin, 2015), pp. 7–19

    Google Scholar 

  23. I. Berkes, R. Tichy, The Kadec-Pełczynski theorem in L p, 1 ≤ p < 2. Proc. Am. Math. Soc. 144, 2053–2066 (2016)

    Google Scholar 

  24. I. Berkes, R. Tichy, Resonance theorems and the central limit theorem for lacunary series, Preprint 2016

    Google Scholar 

  25. I. Berkes, R. Tichy, A uniform version of the subsequence principle, Preprint 2016

    Google Scholar 

  26. I. Berkes, M. Weber, On the convergence of ∑c k f(n k x). Mem. Am. Math. Soc. 201(943), viii+72 pp. (2009)

    Google Scholar 

  27. S. Bobkov, F. Götze, Concentration inequalities and limit theorems for randomized sums. Probab. Theory Rel. Fields 137, 49–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. S.D. Chatterji, A general strong law. Invent. Math. 9, 235–245 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.D. Chatterji, Un principe de sous-suites dans la théorie des probabilités, in Séminaire des probabilités VI, Strasbourg. Lecture Notes in Mathematics, vol. 258 (Springer, Berlin, 1972), pp. 72–89

    Google Scholar 

  30. S.D. Chatterji, A principle of subsequences in probability theory: the central limit theorem. Adv. Math. 13, 31–54 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.D. Chatterji, A subsequence principle in probability theory II. The law of the iterated logarithm. Invent. Math. 25, 241–251 (1974)

    Article  MATH  Google Scholar 

  32. P. Erdős, On trigonometric sums with gaps. Magyar Tud. Akad. Mat. Kut. Int. Közl. 7, 37–42 (1962)

    MathSciNet  MATH  Google Scholar 

  33. P. Erdős, I.S. Gál, On the law of the iterated logarithm. Proc. Nederl. Akad. Wetensch. Ser. A 58, 65–84 (1955)

    Article  MATH  Google Scholar 

  34. J.-H. Evertse, R.H.-P. Schlickewei, W.M. Schmidt, Linear equations in variables which lie in a multiplicative group. Ann. Math. 155, 807–836 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Fukuyama, The law of the iterated logarithm for discrepancies of {θ n x}. Acta Math. Hungar. 118, 155–170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Fukuyama, The law of the iterated logarithm for the discrepancies of a permutation of {n k x}. Acta Math. Acad. Sci. Hung. 123, 121–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Fukuyama, A law of the iterated logarithm for discrepancies: non-constant limsup. Monatsh. Math. 160, 143–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Fukuyama, B. Petit, Le théorème limite central pour les suites de R. C. Baker. Ergodic Theory Dyn. Syst. 21, 479–492 (2001)

    MATH  Google Scholar 

  39. F.K. Fukuyama, M. Yamashita, Metric discrepancy results for geometric progressions with large ratios. Monatsh. Math. 180, 731–742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, 2nd ed. (Robert E. Krieger Publishing Co., Melbourne, FL, 1987)

    MATH  Google Scholar 

  41. V.F. Gaposhkin, Lacunary series and independent functions. Russian Math. Surv. 21, 1–82 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  42. V.F. Gaposhkin, On some systems of almost independent functions. Siberian Math. J. 9, 198–210 (1968)

    Article  MATH  Google Scholar 

  43. V.F. Gaposhkin, The central limit theorem for some weakly dependent sequences. Theory Probab. Appl. 15, 649–666 (1970)

    Article  MATH  Google Scholar 

  44. A. Garsia, Existence of almost everywhere convergent rearrangements for Fourier series of L 2 functions. Ann. Math. 79, 623–629 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Guerre, Types and suites symétriques dans L p, 1 ≤ p < +. Israel J. Math. 53, 191–208 (1986)

    Google Scholar 

  46. J. Hawkes, Probabilistic behaviour of some lacunary series. Z. Wahrsch. verw. Gebiete 53, 21–33 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Kac, On the distribution of values of sums of the type ∑f(2k t). Ann. Math. 47, 33–49 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Kac, Probability methods in some problems of analysis and number theory. Bull. Am. Math. Soc. 55, 641–665 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  49. M.I. Kadec, W. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L p . Studia Math. 21, 161–176 (1961/1962)

    Google Scholar 

  50. J. Komlós, A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18, 217–229 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Komlós, Every sequence converging to 0 weakly in L 2 contains an unconditional convergence sequence. Ark. Math. 12, 41–49 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  52. D.E. Menshov, Sur la convergence et la sommation des séries de fonctions orthogonales. Bull. Soc. Math. France 64, 147–170 (1936)

    MathSciNet  Google Scholar 

  53. W. Morgenthaler, A central limit theorem for uniformly bounded orthonormal systems. Trans. Am. Math. Soc. 79, 281–311 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Nair, On strong uniform distribution. Acta Arith. 56, 183–193 (1990)

    MathSciNet  MATH  Google Scholar 

  55. E.M. Nikishin, Resonance theorems and superlinear operators. Russian Math. Surv. 25/6, 125–187 (1970)

    Google Scholar 

  56. W. Philipp, Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26, 241–251 (1974/1975)

    Google Scholar 

  57. W. Philipp, The functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables. Ann. Probab. 5, 319–350 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  58. R. Ranga Rao, Relations between weak and uniform convergence of measures with applications. Ann. Math. Stat. 33, 659–680 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Salem, A. Zygmund, On lacunary trigonometric series. Proc. Natl. Acad. Sci. USA 33, 333–338 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Shorack, J. Wellner, Empirical Processes with Applications in Statistics (Wiley, New York, 1986)

    MATH  Google Scholar 

  61. S. Takahashi, On lacunary trigonometric series. Proc. Jpn. Acad. 41, 503–506 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Takahashi, On the law of the iterated logarithm for lacunary trigonometric series. Tohoku Math. J. 24, 319–329 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Takahashi, On the law of the iterated logarithm for lacunary trigonometric series. II. Tohoku Math. J. 27, 391–403 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Tijdemann, On integers with many small prime factors. Compositio Math. 26, 319–330 (1973)

    MathSciNet  Google Scholar 

  65. P. Uljanov, Solved and unsolved problems in the theory of trigonometric and orthogonal series (Russian). Uspehi Mat. Nauk 19/1, 1–69 (1964)

    Google Scholar 

  66. M. Weber, Discrepancy of randomly sampled sequences of reals. Math. Nachr. 271, 105–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Weiss, On the law of the iterated logarithm for uniformly bounded orthonormal systems. Trans. Am. Math. Soc. 92, 531–553 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Zygmund, Trigonometric Series, vols. I, II, 3rd ed. (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

Download references

Acknowledgement

The research is supported by FWF grant P24302-N18 and NKFIH grant K 108615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Berkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berkes, I. (2017). On the Uniform Theory of Lacunary Series. In: Elsholtz, C., Grabner, P. (eds) Number Theory – Diophantine Problems, Uniform Distribution and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55357-3_6

Download citation

Publish with us

Policies and ethics