Skip to main content

Radio Observations as an Exoplanet Discovery Method

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Detection of radio emission from Jupiter was identified quickly as being due to its planetary-scale magnetic field. Subsequent spacecraft investigations have revealed that many of the planets, and even some moons, either have or have had a planetary-scale magnetic field. In the case of the Earth, Jupiter, Saturn, Uranus, and Neptune, the magnetic field is generated by dynamo processes within the planet, and an interaction between the solar wind and their magnetic fields generates intense radio emission via the electron cyclotron maser instability. Not only may the radio emissions be a means for discovering extrasolar planets, because magnetic fields are tied to the properties of planetary interiors, radio emissions may be a remote sensing means of constraining extrasolar planetary properties that will be otherwise difficult to access. In the case of terrestrial planets, the presence or absence of a magnetic field may be an indicator for habitability. While no extrasolar planets have yet been detected in the radio, new ground-based telescopes and new possibilities for space-based telescopes provide promise for the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander JK, Brown LW, Clark TA, Stone RG, Weber RR (1969) The spectrum of the cosmic radio background between 0.4 and 6.5 MHz. ApJ 157:L163

    Article  ADS  Google Scholar 

  • Alexander JK, Kaiser ML, Novaco JC, Grena FR, Weber RR (1975) Scientific instrumentation of the radio-astronomy-explorer-2 Satellite. A&A 40:365

    ADS  Google Scholar 

  • Banazadeh P, Lazio J, Jones D, Scharf DP, Fowler W, Aladangady C (2013) Feasibility analysis of XSOLANTRA: a mission concept to detect exoplanets with an array of CubeSats. In: Proceedings of 2013 IEEE aerospace conference. https://doi.org/10.1109/AERO.2013.6496864

  • Bastian TS, Dulk GA, Leblanc Y (2000) A search for radio emission from extrasolar planets. ApJ 545:1058. https://doi.org/10.1086/317864

    Article  ADS  Google Scholar 

  • Baumback MM, Gurnett DA, Calvert W, Shawhan SD (1986) Satellite interferometric measurements of auroral kilometric radiation. Geophys Res Lett 13:1105

    Article  ADS  Google Scholar 

  • Berger E, Ball S, Becker KM et al (2001) Discovery of radio emission from the brown dwarf LP944-20. Nature 410:338

    Article  ADS  Google Scholar 

  • Burke BF, Franklin KL (1955) Observations of a variable radio source associated with the planet Jupiter. J Geophys Res 60:213

    Article  ADS  Google Scholar 

  • Burningham B, Hardcastle M, Nichols JD et al (2016) A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs. MNRAS 463:2202. https://doi.org/10.1093/mnras/stw2065

    Article  ADS  Google Scholar 

  • Cane HV (1979) Spectra of the non-thermal radio radiation from the galactic polar regions. MNRAS 189:465

    Article  ADS  Google Scholar 

  • Carr TD, Gulkis S (1969) The magnetosphere of Jupiter. Ann Rev Astron Astrophys 7:577

    Article  ADS  Google Scholar 

  • Christensen UR (2010) Dynamo scaling laws and applications to the planets. Space Sci Rev:152:565

    Article  ADS  Google Scholar 

  • Christensen UR, Holzwarth V, Reiners A (2009) Energy flux determines magnetic field strength of planets and stars. Nature 457:167. https://doi.org/10.1038/nature07626

    Article  ADS  Google Scholar 

  • de Pater I, Butler BJ, Green DA, Strom R, Millan R, Klein MJ, Bird MK, Funke O, Neidhöfer J, Maddalena R, Sault RJ, Kesteven M, Smits DP, Hunstead R (2003) Jupiter’s radio spectrum from 74 MHz up to 8 GHz. Icarus 163:434. https://doi.org/10.1016/S0019-1035(03)00067-8

    Article  ADS  Google Scholar 

  • Driscoll P, Olson P (2011) Optimal dynamos in the cores of terrestrial exoplanets: magnetic field generation and detectability. Icarus 213:12

    Article  ADS  Google Scholar 

  • Fares R, Donati J-F, Moutou C, Jardine MM, Griessmeier J-M, Zarka P, Shkolnik EL, Bohlender D, Catala C, Collier Cameron A (2010) Searching for star-planet interactions within the magnetosphere of HD 189733. MNRAS 406:409

    Article  ADS  Google Scholar 

  • Farrell WM, Desch MD, Zarka P (1999) On the possibility of coherent cyclotron emission from extrasolar planets. J Geophys Res 104:14025

    Article  ADS  Google Scholar 

  • Fennelly AJ, Matloff GL (1974) Radio detection of Jupiter-like extra-solar planets. J Brit Interplanet Soc 27:660

    ADS  Google Scholar 

  • Franklin KL, Burke BF (1956) Radio observations of Jupiter. AJ 61:177

    Article  ADS  Google Scholar 

  • French FW, Huguenin GR, Rodman AK (1967) A synthetic aperture approach to space-based radio telescopes. J Spacecr Rocket 4:1649

    Article  Google Scholar 

  • Fujii Y, Spiegel DS, Mroczkowski T, Nordhaus J, Zimmerman NT, Parsons A, Mirbabayi M, Madhusudhan N (2015) Radio emission from red-giant hot Jupiters. ApJ 820:122. https://doi.org/10.3847/0004-637X/820/2/122

    Article  ADS  Google Scholar 

  • Gallagher DL, Dangelo N (1981) Correlations between solar wind parameters and auroral kilometric radiation intensity. Geophys Res Lett 8:1087

    Article  ADS  Google Scholar 

  • George SJ, Stevens IR (2007) Giant metrewave radio telescope low-frequency observations of extrasolar planetary systems. MNRAS 382:455. https://doi.org/10.1111/j.1365-2966.2007.12387.x

    Article  ADS  Google Scholar 

  • Griessmeier J-M (2007) Aspects of the magnetosphere stellar wind interaction of close-in extrasolar planets. Planet Space Sci 55:530

    Article  ADS  Google Scholar 

  • Grießmeier J-M, Stadelmann A, Penz T et al (2004) The effect of tidal locking on the magnetospheric and atmospheric evolution of ‘Hot Jupiters’. A&A 425:753

    Article  ADS  Google Scholar 

  • Griessmeier J-M, Motschmann U, Mann G, Rucker HO (2005) The influence of stellar wind conditions on the detectability of planetary radio emissions. A&A 437:717

    Article  ADS  Google Scholar 

  • Griessmeier J-M, Preusse S, Khodachenko M, Motschmann U, Mann G, Rucker HO (2007a) Exoplanetary radio emission under different stellar wind conditions. Planet Space Sci 55:618

    Article  ADS  Google Scholar 

  • Griessmeier J-M, Zarka P, Spreeuw H (2007b) Predicting low-frequency radio fluxes of known extrasolar planets. A&A 475:359

    Article  ADS  Google Scholar 

  • Grießmeier J-M, Khodachenko M, Lammer H, Grenfell JL, Stadelmann A, Motschmann U (2010) Stellar activity and magnetic shielding. In: Kosovid’ev AG, Andrei AH, Rozelot J-P (eds)Solar and stellar variability: impact on earth and planets. Proceedings of international astronomical union. IAU symposium, vol 264. Cambridge University Press, Cambridge, p 385

    Article  Google Scholar 

  • Gurnett DA, Kurth WS, Hospodarsky GB et al (2002) Control of Jupiter’s radio emission and aurorae by the solar wind. Nature 415:985

    Article  ADS  Google Scholar 

  • Hallinan G, Antonova A, Doyle JG, Bourke S, Lane C, Golden A (2008) Confirmation of the electron cyclotron maser instability as the dominant source of radio emission from very low mass stars and brown dwarfs. ApJ 684:644. https://doi.org/10.1086/590360

    Article  ADS  Google Scholar 

  • Hallinan G, Sirothia SK, Antonova A, Ishwara-Chandra CH, Bourke S, Doyle JG, Hartman J, Golden A (2013) Looking for a pulse: a search for rotationally modulated radio emission from the hot Jupiter, Ï„ Boötis b. ApJ 762:34

    Article  ADS  Google Scholar 

  • Ignace R, Giroux ML, Luttermoser DG (2010) Radio emissions from substellar companions of evolved cool stars. MNRAS 402:2609. https://doi.org/10.1111/j.1365-2966.2009.16085.x

    Article  ADS  Google Scholar 

  • Jaeger TR, Osten RA, Lazio TJ, Kassim N, Mutel RL (2011) 325 MHz very large array observations of ultracool dwarfs TVLM 513-46546 and 2MASS J0036+ 1821104. AJ 142:189. https://doi.org/10.1088/0004-6256/142/6/189

    Article  ADS  Google Scholar 

  • Jakosky BM, Grebowsky JM, Luhmann JG et al (2015) MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science 350:0210. https://doi.org/10.1126/science.aad0210

    Article  Google Scholar 

  • Jardine M, Collier Cameron A (2008) Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength. A&A 490:843

    Article  ADS  Google Scholar 

  • Jones DL et al (2000) The ALFA medium explorer mission. Adv Space Res 26:743

    Article  ADS  Google Scholar 

  • Kao MM, Hallinan G, Pineda JS, Escala I, Burgasser A, Bourke S, Stevenson D (2016) Auroral radio emission from late L and T dwarfs: a new constraint on dynamo theory in the substellar regime. ApJ 818:24. https://doi.org/10.3847/0004-637X/818/1/24

    Article  ADS  Google Scholar 

  • Klein MJ, Thompson TJ, Bolton S (1989) Systematic observations and correlation studies of variations in the synchrotron radio emission from Jupiter. In: Belton MJS, West RA, Rahe J, Pereyda M (eds) Time-variable phenomena in the Jovian system. NASA special publication series, NASA-SP-494. NASA, Washington, DC, p 151

    Google Scholar 

  • Lazio TJW, Farrell WM (2007) Magnetospheric emissions from the planet orbiting Ï„ Bootis: a multiepoch search. ApJ 668:1182

    Article  ADS  Google Scholar 

  • Lazio TJW, Farrell WM, Dietrick J, Greenlees E, Hogan E, Jones C, Hennig LA (2004) The radiometric bode’s law and extrasolar planets. ApJ 612:511

    Article  ADS  Google Scholar 

  • Lazio TJW, Carmichael S, Clark J, Elkins E, Gudmundsen P, Mott Z, Szwajkowski M, Hennig LA (2010a) A blind search for magnetospheric emissions from planetary companions to nearby solar-type stars. AJ 139:96

    Article  ADS  Google Scholar 

  • Lazio TJW, Shankland PD, Farrell WM, Blank DL (2010b) Radio observations of HD 80606 near planetary periastron. AJ 140:1929

    Article  ADS  Google Scholar 

  • Lazio TJW, Shkolnik E, Hallinan G et al (2016) Planetary magnetic fields: planetary interiors and habitability. W. M. Keck Institute for Space Studies. http://kiss.caltech.edu/new_website/programs/magnetic_final_report.pdf

  • Lecavelier Des Etangs A, Sirothia SK, Gopal-Krishna A, Zarka P (2009) GMRT radio observations of the transiting extrasolar planet HD 189733 b at 244 and 614 MHz. A&A 500:L51

    Article  ADS  Google Scholar 

  • Lecavelier Des Etangs A, Sirothia SK, Gopal-Krishna A, Zarka P (2011) GMRT search for 150 MHz radio emission from the transiting extrasolar planets HD 189733 b and HD 209458 b. A&A 533:A50

    Article  ADS  Google Scholar 

  • Lecavelier Des Etangs A, Sirothia SK, Gopal-Krishna A, Zarka P (2013) Hint of 150 MHz radio emission from the Neptune-mass extrasolar transiting planet HAT-P-11b. A&A 552:A65

    Article  ADS  Google Scholar 

  • Lynch C, Murphy T, Ravi V, Hobbs G, Lo K, Ward C (2016) Radio detections of southern ultracool dwarfs. MNRAS 457:1224. https://doi.org/10.1093/mnras/stw050

    Article  ADS  Google Scholar 

  • Murphy T, Bell ME, Kaplan DL et al (2015) Limits on low frequency radio emission from southern exoplanets with the Murchison widefield array. MNRAS 446:2560. https://doi.org/10.1093/mnras/stu2253

    Article  ADS  Google Scholar 

  • Mutel R, Gurnett DA, Christopher I (2004) Spatial and temporal properties of AKR burst emission derived from cluster WBD VLBI studies. Ann Geophys 22:2625

    Article  ADS  Google Scholar 

  • Nichols JD (2011) Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. MNRAS 414:2125

    Article  ADS  Google Scholar 

  • Nichols JD (2012) Candidates for detecting exoplanetary radio emissions generated by magnetosphere-ionosphere coupling. MNRAS 427:L75

    ADS  Google Scholar 

  • Pérez LM, Carpenter JM, Andrews SM et al (2016) Spiral density waves in a young protoplanetary disk. Science 353:1519. https://doi.org/10.1126/science.aaf8296

    Article  ADS  MathSciNet  Google Scholar 

  • Reiners A, Christensen UR (2010) A magnetic field evolution scenario for brown dwarfs and giant planets. A&A 522:A13

    Article  ADS  Google Scholar 

  • Rogers LA, Seager S (2010) A framework for quantifying the degeneracies of exoplanet interior compositions. ApJ 712:974

    Article  ADS  Google Scholar 

  • Route M, Wolszczan A (2016) Radio flaring from the T6 dwarf WISEPC J112254.73+ 255021.5 with a possible ultra-short periodicity. ApJ 821:L21. http://doi.org/10.3847/2041-8205/821/2/L21

    Article  ADS  Google Scholar 

  • Schubert G, Soderlund KM (2011) Planetary magnetic fields: observations and models. Phys Earth Plan Inter 187:92

    Article  ADS  Google Scholar 

  • Sirothia SK, Lecavelier des Etangs A, Gopal-Krishna A, Kantharia NG, Ishwar-Chandra CH (2014) Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT sky survey. A&A 562:A108. https://doi.org/10.1051/0004-6361/201321571

    Article  ADS  Google Scholar 

  • Smith AMS, Collier Cameron A, Greaves J, Jardine M, Langston G, Backer D (2009) Secondary radio eclipse of the transiting planet HD 189733 b: an upper limit at 307–347 MHz. MNRAS 395:335. https://doi.org/10.1111/j.1365-2966.2009.14510.x

    Article  ADS  Google Scholar 

  • Stevens IR (2005) Magnetospheric radio emission from extrasolar giant planets: the role of the host stars. MNRAS 356:1053

    Article  ADS  Google Scholar 

  • Stevenson DJ (2010) Planetary magnetic fields: achievements and prospects. Space Sci Rev 152:651

    Article  ADS  Google Scholar 

  • Tarter J (2001) The search for extraterrestrial intelligence (SETI). ARA&A 39:511. https://doi.org/10.1146/annurev.astro.39.1.511

    Article  ADS  Google Scholar 

  • Taylor GB, Ellingson SW, Kassim NE et al (2012) First light for the first station of the long wavelength array. J Astron Instrum 1:1250004. https://doi.org/10.1142/S2251171712500043

    Article  Google Scholar 

  • Treumann RA (2006) The electron-cyclotron maser for astrophysical application. A&A Rev 13:229

    Article  ADS  Google Scholar 

  • van Haarlem MP et al (2013) LOFAR: the lOw-frequency array. A&A 556:A2

    Article  ADS  Google Scholar 

  • Vanhamäki H (2011) Emission of cyclotron radiation by interstellar planets. Planet Space Sci 59:862. https://doi.org/10.1016/j.pss.2011.04.002

    Article  ADS  Google Scholar 

  • Vidotto AA, Opher M, Jatenco-Pereira V, Gombosi TI (2010) Simulations of winds of weak-lined T Tauri stars. II. The effects of a tilted magnetosphere and planetary interactions. ApJ 720:1262. https://doi.org/10.1088/0004-637X/720/2/1262

    Article  ADS  Google Scholar 

  • Vorgul I, Kellett BJ, Cairns RA, Bingham R, Ronald K, Speirs DC, McConville SL, Gillespie KM, Phelps ADR (2011) Cyclotron maser emission: Stars, planets, and laboratory. Phys Plasmas 18:056501. https://doi.org/10.1063/1.3567420

    Article  ADS  Google Scholar 

  • Willes AJ, Wu K (2005) Radio emissions from terrestrial planets around white dwarfs. A&A 432:1091. https://doi.org/10.1051/0004-6361:20040417

    Article  ADS  Google Scholar 

  • Winglee RM, Dulk GA, Bastian TS (1986) A search for cyclotron maser radiation from substellar and planet-like companions of nearby stars. ApJ 309:L59

    Article  ADS  Google Scholar 

  • Wolf S (2008) Detecting protoplanets with ALMA. Ap&SS 313:109. https://doi.org/10.1007/ s10509-007-9660-z

  • Wood BE, Linsky JL, Müller H-R, Zank GP (2001) Observational estimates for the mass-loss rates of α centauri and proxima centauri using hubble space telescope Lyα spectra. ApJ 547:L49

    Article  ADS  Google Scholar 

  • Wood BE, Müller H-R, Zank GP, Linsky JL (2002) Measured mass-loss rates of solar-like stars as a function of age and activity. ApJ 574:412

    Article  ADS  Google Scholar 

  • Wood BE, Müller H-R, Zank GP, Linsky JL, Redfield S (2005) New mass-loss measurements from astrospheric Lyα absorption. ApJ 628:L143

    Article  ADS  Google Scholar 

  • Yantis WF, Sullivan WT III, Erickson WC (1977) A search for extra-solar Jovian planets by radio techniques. BAAS 9:453

    ADS  Google Scholar 

  • Zarka P (1992) The auroral radio emissions from planetary magnetospheres – what do we know, what don’t we know, what do we learn from them? Adv Space Res 12:99

    Article  ADS  Google Scholar 

  • Zarka P (2006) Hot Jupiters and magnetized stars: giant analogs of the satellite-Jupiter system. In: Rucker H, Kurth W, Mann G (eds) Planetary radio emissions VI. Austrian Academy of Sciences Press, Vienna, p. 543

    Google Scholar 

  • Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet Space Sci 55:598

    Article  ADS  Google Scholar 

  • Zarka P, Queinnec J, Ryabov BP et al (1997) Ground-based high sensitivity radio astronomy at decameter wavelengths. in planetary radio emission IV. In: Rucker HO, Bauer SJ, Lecacheux A (eds) Proceedings of the 4th international workshop. Austrian Academy of Sciences Press, Vienna, p 101

    Google Scholar 

  • Zarka P, Treumann RA, Ryabov BP, Ryabov VB (2001) Magnetically-driven planetary radio emissions and application to extrasolar planets. Ap&SS 277:293

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Joseph W. Lazio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lazio, T.J.W. (2018). Radio Observations as an Exoplanet Discovery Method. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_9

Download citation

Publish with us

Policies and ethics