Skip to main content

Space Astrometry Missions for Exoplanet Science: Gaia and the Legacy of Hipparcos

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Astrometry as a technique has so far proved of limited utility when employed as either a follow-up tool or to independently search for planetary-mass companions around stars in the solar neighborhood. However, the situation is bound to change soon. In this chapter, we provide a brief overview of past and present efforts to detect planets via milli-arcsecond (mas) astrometry, with a special focus on the legacy of the Hipparcos mission. We then focus on the Gaia mission that is poised to become a game changer in the field of exoplanets by unleashing for the first time the power of micro-arcsecond (μas) astrometry. We start by briefly describing the mission status and operation. Next, we address some of the relevant technical issues associated with the precise and accurate determination of astrometric orbits of planetary systems using Gaia data. We then present and discuss the Gaia planet-finding capabilities. We conclude by putting Gaia astrometry in context, illustrating its potential for crucial contributions to exoplanetary science in synergy with other indirect and direct methods for the detection and characterization of planetary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anglada-Escudé G, Boss AP, Weinberger AJ et al (2012) Astrometry and radial velocities of the planet host M dwarf GJ 317: new trigonometric distance, metallicity, and upper limit to the mass of GJ 317b. ApJ 746:37

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Tuomi M, Arriagada P et al (2016) No evidence for activity correlations in the radial velocities of Kapteyn’s star. ApJ 830:74

    Article  ADS  Google Scholar 

  • Bender C, Simon M, Prato L, Mazeh T, Zucker S (2005) An upper bound on the 1.6 micron flux ratio of the companion to ρ coronae borealis. AJ 129:402–408

    Article  ADS  Google Scholar 

  • Benedict GF, McArthur BE, Nelan EP, Harrison TE (2017) Astrometry with hubble space telescope fine guidance sensors – a review. PASP 129(1):012,001

    Article  Google Scholar 

  • Benz W, Ida S, Alibert Y, Lin D, Mordasini C (2014) Planet population synthesis. Protostars and planets VI. The University of Arizona Press, Tucson, pp 691–713

    Google Scholar 

  • Black DC, Scargle JD (1982) On the detection of other planetary systems by astrometric techniques. ApJ 263:854–869

    Article  ADS  Google Scholar 

  • Boss AP, Weinberger AJ, Keiser SA et al (2017) Astrometric constraints on the masses of long-period gas giant planets in the TRAPPIST-1 planetary system. ArXiv e-prints AJ 154:103

    Google Scholar 

  • Brumberg VA (1991) Essential relativistic celestial mechanics. Adam Hilger, Bristol/New York

    MATH  Google Scholar 

  • Bryan ML, Knutson HA, Howard AW et al (2016) Statistics of long period gas giant planets in known planetary systems. ApJ 821:89

    Article  ADS  Google Scholar 

  • Casertano S, Lattanzi MG, Sozzetti A et al (2008) Double-blind test program for astrometric planet detection with Gaia. A&A 482:699–729

    Article  ADS  Google Scholar 

  • Crosta MT, Vecchiato A, de Felice F, Lattanzi MG, Bucciarelli B (2003) Some aspects of relativistic astrometry from within the solar system. Celest Mech Dyn Astron 87:209–218

    Article  ADS  MathSciNet  Google Scholar 

  • Crosta M, Vecchiato A, de Felice F, Lattanzi MG (2015) The ray tracing analytical solution within the RAMOD framework. The case of a Gaia-like observer. Class Quantum Gravity 32(16):165008

    Article  ADS  MathSciNet  Google Scholar 

  • Crouzier A, Malbet F, Henault F et al (2016) A detector interferometric calibration experiment for high precision astrometry. A&A 595:A108

    Article  ADS  Google Scholar 

  • Crowley C, Kohley R, Hambly NC et al (2016) Gaia data release 1. On-orbit performance of the Gaia CCDs at L2. A&A 595:A6

    Google Scholar 

  • de Bruijne JHJ (2012) Science performance of Gaia, ESA’s space-astrometry mission. Ap&SS 341:31–41

    Article  ADS  Google Scholar 

  • de Bruijne JHJ, Rygl KLJ, Antoja T (2014) Gaia astrometric science performance – post-launch predictions. EAS Publ Ser 67:23–29. https://doi.org/10.1051/eas/1567004

    Article  Google Scholar 

  • de Felice F, Preti G (2006) Ray tracing in relativistic astrometry: stellar positions, stellar motion and error budget. Class Quantum Gravity 23:5467–5476

    Article  ADS  MathSciNet  Google Scholar 

  • de Felice F, Preti G (2008) Ray tracing in relativistic astrometry: the satellite attitude error and the comprehensive error budget. Class Quantum Gravity 25(16):165015

    Article  ADS  Google Scholar 

  • de Felice F, Lattanzi MG, Vecchiato A, Bernacca PL (1998) General relativistic satellite astrometry. I. A non-perturbative approach to data reduction. A&A 332:1133–1141

    Google Scholar 

  • de Felice F, Bucciarelli B, Lattanzi MG, Vecchiato A (2001) General relativistic satellite astrometry. II. Modeling parallax and proper motion. A&A 373:336–344

    Google Scholar 

  • de Felice F, Crosta MT, Vecchiato A, Lattanzi MG, Bucciarelli B (2004) A general relativistic model of light propagation in the gravitational field of the solar system: the static case. ApJ 607:580–595

    Article  ADS  Google Scholar 

  • de Felice F, Vecchiato A, Crosta MT, Bucciarelli B, Lattanzi MG (2006) A general relativistic model of light propagation in the gravitational field of the Solar System: the dynamical case. ApJ 653:1552–1565

    Article  ADS  Google Scholar 

  • de Felice F, Preti G, Crosta MT, Vecchiato A (2011) Relativistic satellite astrometry: the stellar radial velocity. A&A 528:A23

    Article  ADS  Google Scholar 

  • Dumusque X, Borsa F, Damasso M et al (2017) Radial-velocity fitting challenge. II. First results of the analysis of the data set. A&A 598:A133

    Article  ADS  Google Scholar 

  • Dzigan Y, Zucker S (2012) Detection of transiting Jovian exoplanets by Gaia photometry – expected yield. ApJ 753:L1

    Article  ADS  Google Scholar 

  • Dzigan Y, Zucker S (2013) Directed follow-up strategy of low-cadence photometric surveys in search of transiting exoplanets – II. Application to Gaia. MNRAS 428:3641–3647

    Google Scholar 

  • Eastman J, Gaudi BS, Agol E (2013) EXOFAST: a fast exoplanetary fitting suite in IDL. PASP 125:83

    Article  ADS  Google Scholar 

  • Eriksson U, Lindegren L (2007) Limits of ultra-high-precision optical astrometry. Stellar surface structures. A&A 476:1389–1400

    Google Scholar 

  • Feng F, Tuomi M, Jones HRA et al (2017) Color difference makes a difference: four planet candidates around tau Ceti. ArXiv e-prints AJ 154:135

    Google Scholar 

  • Fischer DA, Anglada-Escude G, Arriagada P et al (2016) State of the field: extreme precision radial velocities. PASP 128(6):066,001

    Article  Google Scholar 

  • Gai M, Cancelliere R (2008) Astrometric effects of non-uniform telescope throughput. MNRAS 391:1451–1456

    Article  ADS  Google Scholar 

  • Gai M, Carollo D, Delbò M et al (2001) Location accuracy limitations for CCD cameras. A&A 367:362–370

    Article  ADS  Google Scholar 

  • Gaia Collaboration, Prusti T, de Bruijne JHJ et al (2016a) The Gaia mission. A&A 595:A1

    Article  ADS  Google Scholar 

  • Gaia Collaboration, Brown AGA, Vallenari A et al (2016b) Gaia data release 1. Summary of the astrometric, photometric, and survey properties. A&A 595:A2

    Google Scholar 

  • Gaia Collaboration, Clementini G, Eyer L et al (2017) Gaia data release 1. Testing the parallaxes with local Cepheids and RR Lyrae stars. ArXiv e-prints A&A 605:A79

    Google Scholar 

  • Gatewood G, Han I, Black DC (2001) A combined hipparcos and multichannel astrometric photometer study of the proposed planetary system of ρ coronae borealis. ApJ 548:L61–L63

    Article  ADS  Google Scholar 

  • Giuppone CA, Morais MHM, Correia ACM (2013) A semi-empirical stability criterion for real planetary systems with eccentric orbits. MNRAS 436:3547–3556

    Article  ADS  Google Scholar 

  • Green RM (1985) Spherical astronomy. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Halbwachs JL, Arenou F, Mayor M, Udry S, Queloz D (2000) Exploring the brown dwarf desert with Hipparcos. A&A 355:581–594

    ADS  Google Scholar 

  • Han I, Black DC, Gatewood G (2001) Preliminary astrometric masses for proposed extrasolar planetary companions. ApJ 548:L57–L60

    Article  ADS  Google Scholar 

  • Hatzes AP (2013) The radial velocity detection of Earth-mass planets in the presence of activity noise: the case of α centauri Bb. ApJ 770:133

    Article  ADS  Google Scholar 

  • Hatzes AP, Fridlund M, Nachmani G et al (2011) The mass of CoRoT-7b. ApJ 743:75

    Article  ADS  Google Scholar 

  • Klioner SA (2003) A practical relativistic model for microarcsecond astrometry in space. AJ 125:1580–1597

    Article  ADS  Google Scholar 

  • Klioner SA (2004) Physically adequate proper reference system of a test observer and relativistic description of the GAIA attitude. Phys Rev D 69(12):124001

    Article  ADS  Google Scholar 

  • Klioner SA, Kopeikin SM (1992) Microarcsecond astrometry in space – relativistic effects and reduction of observations. AJ 104:897–914

    Article  ADS  Google Scholar 

  • Knutson HA, Fulton BJ, Montet BT et al (2014) Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets. ApJ 785:126

    Article  ADS  Google Scholar 

  • Kovalevsky J (2002) Modern astrometry. Springer, New York

    Book  Google Scholar 

  • Kral Q, Schneider J, Kennedy G, Souami D (2016) Effects of disc asymmetries on astrometric measurements. Can they mimic planets? A&A 592:A39

    Article  ADS  Google Scholar 

  • Lagrange AM, Meunier N, Desort M, Malbet F (2011) Using the Sun to estimate Earth-like planets detection capabilities. III. Impact of spots and plages on astrometric detection. A&A 528:L9

    Article  ADS  Google Scholar 

  • Lattanzi MG, Spagna A, Sozzetti A, Casertano S (2000) Space-borne global astrometric surveys: the hunt for extrasolar planets. MNRAS 317:211–224

    Article  ADS  Google Scholar 

  • Lindegren L, Kovalevsky J (1989) Overview of the data acquisition and reductions. ESA Spec Publ 1111:1

    Google Scholar 

  • Lindegren L, Bastian U (2010) Basic principles of scanning space astrometry. EAS Publ. Ser. 45:109–114

    Article  Google Scholar 

  • Lindegren L, Lammers U, Hobbs D et al (2012) The astrometric core solution for the Gaia mission. Overview of models, algorithms, and software implementation. A&A 538:A78

    Article  ADS  Google Scholar 

  • Lindegren L, Lammers U, Bastian U et al (2016) Gaia data release 1. Astrometry: one billion positions, two million proper motions and parallaxes. A&A 595:A4

    Google Scholar 

  • Madhusudhan N, Knutson H, Fortney JJ, Barman T (2014) Exoplanetary atmospheres. Protostars and planets VI. The University of Arizona Press, Tucson, pp 739–762

    Google Scholar 

  • Makarov VV, Beichman CA, Catanzarite JH et al (2009) Starspot jitter in photometry, astrometry, and radial velocity measurements. ApJ 707:L73–L76

    Article  ADS  Google Scholar 

  • Marchal C, Bozis G (1982) Hill stability and distance curves for the general three-body problem. Celest Mech 26:311–333

    Article  ADS  MathSciNet  Google Scholar 

  • Martín-Fleitas J, Sahlmann J, Mora A et al (2014) Enabling Gaia observations of naked-eye stars. In: Oschmann JM et al (eds) Space telescopes and instrumentation 2014: optical, infrared, and millimeter wave, proc SPIE, vol 9143, p 91430Y. https://doi.org/10.1117/12.2056325

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Article  ADS  Google Scholar 

  • Mazeh T, Zucker S, Dalla Torre A, van Leeuwen F (1999) Analysis of the HIPPARCOS measurements of upsilon andromedae: a mass estimate of its outermost known planetary companion. ApJ 522:L149–L151

    Article  ADS  Google Scholar 

  • Mignard F, Klioner S, Lindegren L et al (2016) Gaia data release 1. Reference frame and optical properties of ICRF sources. A&A 595:A5

    Article  ADS  Google Scholar 

  • Perryman MAC, Hassan H, Batut T et al (eds) (1989) The Hipparcos mission. Pre-launch status. Volume I: the Hipparcos satellite, vol 1. ESA, Paris

    Google Scholar 

  • Perryman MAC, Lindegren L, Arenou F et al (1996) HIPPARCOS distances and mass limits for the planetary candidates: 47 Ursae Majoris, 70 Virginis, and 51 Pegasi. A&A 310:L21

    ADS  Google Scholar 

  • Perryman MAC, Lindegren L, Kovalevsky J et al (1997) The HIPPARCOS catalogue. A&A 323:L49–L52

    ADS  Google Scholar 

  • Perryman MAC, de Boer KS, Gilmore G et al (2001) GAIA: composition, formation and evolution of the Galaxy. A&A 369:339–363

    Article  ADS  Google Scholar 

  • Perryman M, Hartman J, Bakos GÁ, Lindegren L (2014) Astrometric exoplanet detection with Gaia. ApJ 797:14

    Article  ADS  Google Scholar 

  • Pourbaix D (2011) Screening and modelling the double and multiple stars observed by Gaia. In: Docobo JA, Tamazian VS, Balega YY (eds) American institute of physics conference series, vol 1346, pp 122–133. https://doi.org/10.1063/1.3597594

  • Pourbaix D, Arenou F (2001) Screening the Hipparcos-based astrometric orbits of sub-stellar objects. A&A 372:935–944

    Article  ADS  Google Scholar 

  • Pourbaix D, Jorissen A (2000) Re-processing the Hipparcos transit data and intermediate astrometric data of spectroscopic binaries. I. Ba, CH and Tc-poor S stars. A&AS 145:161–183

    Article  ADS  Google Scholar 

  • Rajpaul V, Aigrain S, Roberts S (2016) Ghost in the time series: no planet for Alpha Cen B. MNRAS 456:L6–L10

    Article  ADS  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330

    Article  ADS  Google Scholar 

  • Reffert S, Quirrenbach A (2006) Hipparcos astrometric orbits for two brown dwarf companions: HD 38529 and HD 168443. A&A 449:699–702

    Article  ADS  Google Scholar 

  • Reffert S, Quirrenbach A (2011) Mass constraints on substellar companion candidates from the re-reduced Hipparcos intermediate astrometric data: nine confirmed planets and two confirmed brown dwarfs. A&A 527:A140

    Article  ADS  Google Scholar 

  • Rice WKM, Armitage PJ, Bate MR, Bonnell IA (2003) Astrometric signatures of self-gravitating protoplanetary discs. MNRAS 338:227–232

    Article  ADS  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2014) Transiting exoplanet survey satellite (TESS). In: Oschmann JM et al (eds) Space telescopes and instrumentation 2014: optical, infrared, and millimeter wave, proc SPIE, vol 9143, p 914320. https://doi.org/10.1117/12.2063489

  • Robertson P, Mahadevan S, Endl M, Roy A (2014) Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444

    Article  ADS  Google Scholar 

  • Sahlmann J, Lazorenko PF (2015) Mass ratio of the 2 pc binary brown dwarf LUH 16 and limits on planetary companions from astrometry. MNRAS 453:L103–L107

    Article  ADS  Google Scholar 

  • Sahlmann J, Lovis C, Queloz D, Ségransan D (2011a) HD 5388 b is a 69 MJup companion instead of a planet. A&A 528:L8

    Article  ADS  Google Scholar 

  • Sahlmann J, Ségransan D, Queloz D et al (2011b) Search for brown-dwarf companions of stars. A&A 525:A95

    Article  ADS  Google Scholar 

  • Sahlmann J, Lazorenko PF, Ségransan D et al (2013) Astrometric orbit of a low-mass companion to an ultracool dwarf. A&A 556:A133

    Article  ADS  Google Scholar 

  • Sahlmann J, Lazorenko PF, Ségransan D et al (2015a) Astrometric planet search around southern ultracool dwarfs. III. Discovery of a brown dwarf in a 3-year orbit around DE0630-18. A&A 577:A15

    Article  ADS  Google Scholar 

  • Sahlmann J, Triaud AHMJ, Martin DV (2015b) Gaia’s potential for the discovery of circumbinary planets. MNRAS 447:287–297

    Article  ADS  Google Scholar 

  • Sahlmann J, Lazorenko PF, Ségransan D et al (2016) The mass of planet GJ 676A b from ground-based astrometry. A planetary system with two mature gas giants suitable for direct imaging. A&A 595:A77

    Article  ADS  Google Scholar 

  • Santos NC, Mortier A, Faria JP et al (2014) The HARPS search for southern extra-solar planets. XXXV. The interesting case of HD 41248: stellar activity, no planets? A&A 566:A35

    Article  ADS  Google Scholar 

  • Ségransan D, Mayor M, Udry S et al (2011) The HARPS search for southern extra-solar planets. XXIX. Four new planets in orbit around the moderatly active dwarfs HD 63765, HD 104067, HD 125595, and HIP 70849. A&A 535:A54

    Article  ADS  Google Scholar 

  • Silvotti R, Sozzetti A, Lattanzi M, Morbidelli R (2015) Detectability of substellar companions around white dwarfs with Gaia. In: Dufour P, Bergeron P, Fontaine G (eds) 19th European workshop on white dwarfs, astronomical society of the Pacific conference series, vol 493. Astronomical Society of the Pacific, San Francisco, p 455

    Google Scholar 

  • Sozzetti A (2005) Astrometric methods and instrumentation to identify and characterize extrasolar planets: a review. PASP 117:1021–1048

    Article  ADS  Google Scholar 

  • Sozzetti A (2014) Gaia, non-single stars, brown dwarfs, and exoplanets. Mem Soc Astron Italiana 85:643

    ADS  Google Scholar 

  • Sozzetti A, Desidera S (2010) Hipparcos preliminary astrometric masses for the two close-in companions to HD 131664 and HD 43848. A brown dwarf and a low-mass star. A&A 509:A103

    Article  Google Scholar 

  • Sozzetti A, Casertano S, Lattanzi MG, Spagna A (2001) Detection and measurement of planetary systems with GAIA. A&A 373:L21–L24

    Article  ADS  Google Scholar 

  • Sozzetti A, Casertano S, Brown RA, Lattanzi MG (2003) Narrow-angle astrometry with the space interferometry mission: the search for extrasolar planets. II. Detection and characterization of planetary systems. PASP 115:1072–1104

    Google Scholar 

  • Sozzetti A, Giacobbe P, Lattanzi MG et al (2014) Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential. MNRAS 437:497–509

    Article  ADS  Google Scholar 

  • Sozzetti A, Bonavita M, Desidera S, Gratton R, Lattanzi MG (2016) Gaia: the astrometry revolution. In: Kastner JH, Stelzer B, Metchev SA (eds) Young stars & planets near the Sun, IAU symposium, vol 314, pp 264–269. https://doi.org/10.1017/S1743921315006535

    Google Scholar 

  • Stassun KG, Collins KA, Gaudi BS (2017) Accurate empirical radii and masses of planets and their host stars with Gaia parallaxes. AJ 153:136

    Article  ADS  Google Scholar 

  • Takeuchi T, Velusamy T, Lin DNC (2005) Apparent stellar wobble by a planet in a circumstellar disk: limitations on planet detection by astrometry. ApJ 618:987–1000

    Article  ADS  Google Scholar 

  • Torres G (1999) Substellar companion masses from minimal radial velocity or astrometric information: a Monte Carlo approach. PASP 111:169–176

    Article  ADS  Google Scholar 

  • van Altena WF (2013) Astrometry for astrophysics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • van Leeuwen F (2007) Validation of the new Hipparcos reduction. A&A 474:653–664

    Article  ADS  Google Scholar 

  • van Leeuwen F, Evans DW, De Angeli F et al (2017) Gaia data release 1. The photometric data. A&A 599:A32

    Google Scholar 

  • Vecchiato A, Lattanzi MG, Bucciarelli B et al (2003) Testing general relativity by micro-arcsecond global astrometry. A&A 399:337–342

    Article  ADS  Google Scholar 

  • Will CM (1993) Theory and experiment in gravitational physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409–447

    Article  ADS  Google Scholar 

  • Zucker S, Mazeh T (2000) Analysis of the Hipparcos measurements of HD 10697: a mass determination of a brown dwarf secondary. ApJ 531:L67–L69

    Article  ADS  Google Scholar 

  • Zucker S, Mazeh T (2001) Analysis of the Hipparcos observations of the extrasolar planets and the brown dwarf candidates. ApJ 562:549–557

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Space Agency through Gaia mission contract: the Italian participation to DPAC, ASI 2014-025-R.1.2015 in collaboration with the Italian National Institute of Astrophysics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Sozzetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sozzetti, A., de Bruijne, J. (2018). Space Astrometry Missions for Exoplanet Science: Gaia and the Legacy of Hipparcos. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_81

Download citation

Publish with us

Policies and ethics