Skip to main content

A Spike-Timing Based Integrated Model for Pattern Recognition

  • Chapter
  • First Online:
Neuromorphic Cognitive Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 126))

  • 1611 Accesses

Abstract

During the last few decades, remarkable progress has been made in solving pattern recognition problems using network of spiking neurons. However, the issue of pattern recognition involving computational process from sensory encoding to synaptic learning remains underexplored, as most existing models or algorithms only target part of the computational process. Furthermore, many learning algorithms proposed in literature neglect or pay little attention to sensory information encoding, which makes them incompatible with neural-realistic sensory signals encoded from real-world stimuli. By treating sensory coding and learning as a systematic process, we attempt to build an integrated model based on spiking neural networks (SNNs), which performs sensory neural encoding and supervised learning with precisely timed sequences of spikes. With emerging evidence of precise spike-timing neural activities, the view that information is represented by explicit firing times of action potentials rather than mean firing rates has received increasing attention recently. The external sensory stimulation is first converted into spatiotemporal patterns using latency-phase encoding method and subsequently transmitted to the consecutive network for learning. Spiking neurons are trained to reproduce target signals encoded with precisely timed spikes. It is shown that using a supervised spike-timing based learning, different spatiotemporal patterns are recognized by different spike patterns with a high time precision in milliseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du Bois-Reymond, E.: Untersuchungen uer thierische elektricita. G. Reimer (1848)

    Google Scholar 

  2. Panzeri, S., Brunel, N., Logothetis, N.K., Kayser, C.: Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33(3), 111–120 (2010)

    Article  Google Scholar 

  3. Softky, W.R.: Simple codes versus efficient codes. Curr. Opin. Neurobiol. 5(2), 239–247 (1995)

    Google Scholar 

  4. Rullen, R.V., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13(6), 1255–1283 (2001)

    Google Scholar 

  5. Adrian, E.: The Basis of Sensation: The Action of the Sense Organs. W. W. Norton, New York (1928)

    Google Scholar 

  6. Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4(4), 569–579 (1994)

    Google Scholar 

  7. Litvak, V., Sompolinsky, H., Segev, I., Abeles, M.: On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. J. Neurosci. 23(7), 3006–3015 (2003)

    Google Scholar 

  8. Seung, H.S.: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40(6), 1063–1073 (2003)

    Article  Google Scholar 

  9. Barak, O., Tsodyks, M.: Recognition by variance: learning rules for spatiotemporal patterns. Neural Comput. 18, 2343–2358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bialek, W., Rieke, F., de Ruyter van Steveninck, R., Warland, D.: Reading a neural code. Science 252(5014), 1854–1857 (1991)

    Google Scholar 

  11. Victor, J.D.: How the brain uses time to represent and process visual information. Brain Res. 886(1–2), 33–46 (2000)

    Google Scholar 

  12. Carr, C.E.: Processing of temporal information in the brain. Annu. Rev. Neurosci. 16(1), 223–243 (1993)

    Article  Google Scholar 

  13. Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18(1), 555–586 (1995)

    Article  Google Scholar 

  14. Kayser, C., Montemurro, M.A., Logothetis, N.K., Panzeri, S.: Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61(4), 597–608 (2009)

    Article  Google Scholar 

  15. Meister, M., II, M.J.B.: The neural code of the retina. Neuron 22(3), 435–450 (1999)

    Google Scholar 

  16. Gollisch, T., Meister, M.: Rapid neural coding in the retina with relative spike latencies. Science 319(5866), 1108–1111 (2008)

    Article  Google Scholar 

  17. Keat, J., Reinagel, P., Reid, R., Meister, M.: Predicting every spike: A model for the responses of visual neurons. Neuron 30(3), 803–817 (2001)

    Article  Google Scholar 

  18. Llinas, R.R., Grace, A.A., Yarom, Y.: In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz frequency range. Proc. Natl. Acad. Sci. 88(3), 897–901 (1991)

    Article  Google Scholar 

  19. Koepsell, K., Wang, X., Vaingankar, V., Wei, Y., Wang, Q., Rathbun, D.L., Usrey, W.M., Hirsch, J.A., Sommer, F.T.: Retinal oscillations carry visual information to cortex. Front. Syst. Neurosci. 3, 4 (2009)

    Google Scholar 

  20. Heiligenberg, W.: Neural Nets in Electric Fish. MIT Press, Cambridge (1991)

    Google Scholar 

  21. Chrobak, J.J., Buzsáki, G.: Gamma oscillations in the entorhinal cortex of the freely behaving rat. J. Neurosci. 18(1), 388–398 (1998)

    Google Scholar 

  22. O’Keefe, J., Burgess, N.: Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15(7), 853–866 (2005)

    Google Scholar 

  23. Tsodyks, M.V., Skaggs, W.E., Sejnowski, T.J., McNaughton, B.L.: Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6(3), 271–280 (1996)

    Article  Google Scholar 

  24. Jensen, O.: Information transfer between rhythmically coupled networks: reading the hippocampal phase code. Neural Comput. 13(12), 2743–2761 (2001)

    Article  MATH  Google Scholar 

  25. Blumenfeld, B., Preminger, S., Sagi, D., Tsodyks, M.: Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity. Neuron 52(2), 383–394 (2006)

    Article  Google Scholar 

  26. Tang, H., Li, H., Yan, R.: Memory dynamics in attractor networks with saliency weights. Neural Comput. 22(7), 1899–1926 (2010)

    Google Scholar 

  27. Mainen, Z., Sejnowski, T.: Reliability of spike timing in neocortical neurons. Science 268(5216), 1503–1506 (1995)

    Article  Google Scholar 

  28. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Google Scholar 

  29. Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001)

    Article  Google Scholar 

  30. Hopfield, J.J., Brody, C.D.: What is a moment? “cortical” sensory integration over a brief interval. Proc. Natl. Acad. Sci. 97(25), 13919–13924 (2000)

    Article  Google Scholar 

  31. Hopfield, J.J., Brody, C.D.: What is a moment? transient synchrony as a collective mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. 98(3), 1282–1287 (2001)

    Article  Google Scholar 

  32. Ito, M.: Mechanisms of motor learning in the cerebellum. Brain Res. 886(1–2), 237–245 (2000)

    Article  Google Scholar 

  33. Montgomery, J., Carton, G., Bodznick, D.: Error-driven motor learning in fish. Biol. Bull. 203(2), 238–239 (2002)

    Article  Google Scholar 

  34. Knudsen, E.I.: Supervised learning in the brain. J. Neurosci. 14(7), 3985–3997 (1994)

    Google Scholar 

  35. Ito, M.: Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9(4), 304–313 (2008)

    Article  Google Scholar 

  36. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  38. Nadasdy, Z.: Information encoding and reconstruction from the phase of action potentials. Front. Syst. Neurosci. 3, 6 (2009)

    Article  Google Scholar 

  39. Gawne, T.J., Kjaer, T.W., Richmond, B.J.: Latency: another potential code for feature binding in striate cortex. J. Neurophysiol. 76(2), 1356–1360 (1996)

    Google Scholar 

  40. Reich, D.S., Mechler, F., Victor, J.D.: Temporal coding of contrast in primary visual cortex: when, what, and why. J. Neurophysiol. 85(3), 1039–1050 (2001)

    Google Scholar 

  41. Greschner, M., Thiel, A., Kretzberg, J., Ammermüller, J.: Complex spike-event pattern of transient on-off retinal ganglion cells. J. Neurophysiol. 96(6), 2845–2856 (2006)

    Article  Google Scholar 

  42. Hopfield, J.J.: Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535), 33–36 (1995)

    Article  Google Scholar 

  43. Arnett, D.: Statistical dependence between neighboring retinal ganglion cells in goldfish. Exp. Brain. Res. 32(1) (1978)

    Google Scholar 

  44. DeVries, S.H.: Correlated firing in rabbit retinal ganglion cells. J. Neurophysiol. 81(2), 908–920 (1999)

    Google Scholar 

  45. Meister, M., Lagnado, L., Baylor, D.A.: Concerted signaling by retinal ganglion cells. Science 270(5239), 1207–1210 (1995)

    Article  Google Scholar 

  46. Widrow, B., Hoff, M.E., et al.: Adaptive switching circuits (1960)

    Google Scholar 

  47. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)

    Article  Google Scholar 

  48. Schreiber, S., Fellous, J., Whitmer, D., Tiesinga, P., Sejnowski, T.: A new correlation-based measure of spike timing reliability. Neurocomputing 52–54, 925–931 (2003)

    Article  Google Scholar 

  49. Brody, C.D., Hopfield, J.: Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37(5), 843–852 (2003)

    Article  Google Scholar 

  50. Bohte, S.M., Bohte, E.M., Poutr, H.L., Kok, J.N.: Unsupervised clustering with spiking neurons by sparse temporal coding and multi-layer RBF networks. IEEE Trans. Neural Netw. 13, 426–435 (2002)

    Article  Google Scholar 

  51. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

    Article  Google Scholar 

  52. Brader, J.M., Senn, W., Fusi, S.: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 19(11), 2881–2912 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Haruhiko, T., Masaru, F., Hiroharu, K., Shinji, T., Hidehiko, K., Terumine, H.: Obstacle to training spikeprop networks: cause of surges in training process. In: Proceedings of the 2009 International Joint Conference on Neural Networks, pp. 1225–1229. IEEE Press, Piscataway (2009)

    Google Scholar 

  54. Manette, O., Maier, M.: Temporal processing in primate motor control: relation between cortical and EMG activity. IEEE Trans. Neural Netw. 15(5), 1260–1267 (2004)

    Article  Google Scholar 

  55. Müller-Putz, G.R., Scherer, R., Pfurtscheller, G., Neuper, C.: Temporal coding of brain patterns for direct limb control in humans. Front. Neurosci. 4 (2010)

    Google Scholar 

  56. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  57. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Nurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  58. van Wyk, M., Taylor, W.R., Vaney, D.I.: Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina. J. Neurosci. 26(51), 13250–13263 (2006)

    Article  Google Scholar 

  59. Perlovsky, L.: Computational intelligence applications for defense [research frontier]. Comput. Intell. Mag. IEEE 6(1), 20–29 (2011)

    Article  Google Scholar 

  60. Meng, Y., Zhang, Y., Jin, Y.: Autonomous self-reconfiguration of modular robots by evolving a hierarchical mechanochemical model. Comput. Intell. Mag. IEEE 6(1), 43–54 (2011)

    Article  Google Scholar 

  61. Yan, R., Tee, K.P., Chua, Y., Li, H., Tang, H.: Gesture recognition based on localist attractor networks with application to robot control [application notes]. Comput. Intell. Mag. IEEE 7(1), 64–74 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, Q., Tang, H., Hu, J., Tan, K. (2017). A Spike-Timing Based Integrated Model for Pattern Recognition. In: Neuromorphic Cognitive Systems. Intelligent Systems Reference Library, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-55310-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55310-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55308-5

  • Online ISBN: 978-3-319-55310-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics