Skip to main content

Probing Faster than Light Travel and Chronology Protection with Superluminal Warp Drives

  • Chapter
  • First Online:
Wormholes, Warp Drives and Energy Conditions

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 189))

  • 1644 Accesses

Abstract

Faster than light travel and time machines are among the most tantalising possibilities allowed for by Einstein’s general relativity. In this chapter we shall review the main features of these phenomena, in which spacetimes they appear to be realised, and explain why they are interconnected with the Einsteinian framework. We shall then discuss briefly the paradoxes related to the possibility of time travel and the proposed solutions. Finally, we shall provide an explicit example where a purely semiclassical gravity framework seems sufficient to prevent the stability of a spacetime allowing faster than light propagation. We shall argue that this lends support to a sort of “pre-emptive” chronology protection that forbids the generation of the very spacetime structures which could lead to the construction of time machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Hausdorff manifold is a manifold for which for any two different points \(x_{1}\) and \(x_{2}\) belonging to the manifold admit open sets \(O_{1}\) and \(O_{2}\), with \(x_{1}\in O_{1}\) and \(x_{2}\in O_{2}\), such that \(O_{1}\cap O_{2}=\emptyset \).

  2. 2.

    A possibility brought to us by E. Martín-Martínez and L.J. Garay in a personal communication.

References

  1. Alcubierre M. The warp drive: hyperfast travel within general relativity. Class Quant Grav. 1994;11:L73–7.

    Article  ADS  Google Scholar 

  2. Anderson A, DeWitt B. Does the topology of space fluctuate? Found Phys. 1986;16(2):91–105.

    Article  ADS  MathSciNet  Google Scholar 

  3. Barcelo C, Liberati S, Sonego S, Visser M. Quasi-particle creation by analogue black holes. Class Quant Grav. 2006;23:5341–66.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Barcelo C, Liberati S, Sonego S, Visser M. Fate of gravitational collapse in semiclassical gravity. Phys. Rev. 2008;D77:044,032.

    Google Scholar 

  5. Barcelo C, Liberati S, Visser M. Analogue gravity. Living Rev. Rel. 2005;8:12 [Living Rev. Rel.14,3(2011)].

    Article  MATH  Google Scholar 

  6. Birrell ND, Davies PCW. Quantum fields in curved space., Cambridge monographs on mathematical physicsCambridge: Cambridge Univ. Press; 1984. http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-fields-curved-space?format=PB.

  7. Bombelli L, Lee J, Meyer D, Sorkin R. Space-time as a causal set. Phys Rev Lett. 1987;59:521–4.

    Article  ADS  MathSciNet  Google Scholar 

  8. Corley S, Jacobson T. Black hole lasers. Phys Rev. 1999;D59:124,011.

    MathSciNet  Google Scholar 

  9. Coutant A, Finazzi S, Liberati S, Parentani R. Impossibility of superluminal travel in Lorentz violating theories. Phys Rev. 2012;D85:064,020.

    Google Scholar 

  10. Davies PCW, Fulling SA, Unruh WG. Energy momentum tensor near an evaporating black hole. Phys Rev D. 1976;13:2720–3.

    Article  ADS  Google Scholar 

  11. Echeverria F, Klinkhammer G, Thorne KS. Billiard balls in wormhole spacetimes with closed timelike curves: classical theory. Phys Rev D. 1991;44:1077–99.

    Article  ADS  MathSciNet  Google Scholar 

  12. Einstein A, Rosen N. The particle problem in the general theory of relativity. Phys Rev. 1935;48:73–7. http://link.aps.org/doi/10.1103/PhysRev.48.73.

  13. Finazzi S, Liberati S, Barcelo C. Semiclassical instability of dynamical warp drives. Phys Rev. 2009;D79:124,017.

    Google Scholar 

  14. Flamm L. Beiträge zur Einsteinschen Gravitationstheorie. Hirzel (1916)

    Google Scholar 

  15. Friedman J, Morris MS, Novikov ID, Echeverria F, Klinkhammer G, Thorne KS, Yurtsever U. Cauchy problem in spacetimes with closed timelike curves. Phys Rev D. 1990;42:1915–30.

    Article  ADS  MathSciNet  Google Scholar 

  16. Fuller RW, Wheeler JA. Causality and multiply connected space-time. Phys Rev. 1962;128:919–29.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gambini R, Pullin J. Nonstandard optics from quantum space-time. Phys Rev. 1999;D59:124,021.

    MathSciNet  Google Scholar 

  18. Geroch R. Faster Than Light? AMS/IP Stud Adv Math. 2001;49:59–70.

    MathSciNet  MATH  Google Scholar 

  19. Hawking SW. Chronology protection conjecture. Phys Rev D. 1992;46:603–11.

    Article  ADS  MathSciNet  Google Scholar 

  20. Kay BS, Radzikowski MJ, Wald RM. Quantum field theory on space-times with a compactly generated Cauchy horizon. Commun Math Phys. 1997;183:533–56.

    Article  ADS  MATH  Google Scholar 

  21. Liberati S. Tests of Lorentz invariance: a 2013 update. Class Quant Grav. 2013;30:133,001.

    Article  MathSciNet  MATH  Google Scholar 

  22. Liberati S, Sonego S, Visser M. Faster than c signals, special relativity, and causality. Ann Phys. 2002;298:167–85.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lobo FSN, Visser M. Fundamental limitations on ’warp drive’ spacetimes. Class Quant Grav. 2004;21:5871–92.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Malament D. Causal theories of time and the conventionality of simultaneity. Noûs. 1977;11(3):293–300.

    Article  Google Scholar 

  25. Manogue CA, Copeland E, Dray T. The trousers problem revisited. Pramana. 1988;30:279–92.

    Article  ADS  Google Scholar 

  26. Morris MS, Thorne KS. Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am J Phys. 1988;56(5):395–412.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Morris MS, Thorne KS, Yurtsever U. Wormholes, time machines, and the weak energy condition. Phys Rev Lett. 1988;61(13):1446.

    Article  ADS  Google Scholar 

  28. Olum KD. Superluminal travel requires negative energies. Phys Rev Lett. 1998;81:3567–70.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Penrose R, Sorkin RD, Woolgar E. A Positive mass theorem based on the focusing and retardation of null geodesics. 1993.

    Google Scholar 

  30. Roman TA. Some thoughts on energy conditions and wormholes. In: Proceedings, 10th Marcel Grossmann Meeting On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories. MG10, Rio de Janeiro: Brazil; 2004. 20-26 July 2003. pp. 1909–1922

    Google Scholar 

  31. Scharnhorst K. On Propagation of light in the vacuum between plates. Phys. Lett. B. 1990;236:354–9.

    Article  ADS  Google Scholar 

  32. Visser M. Hawking’s chronology protection conjecture: Singularity structure of the quantum stress energy tensor. Nucl. Phys. B. 1994;416:895–906.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Visser, M.: Lorentzian wormholes: From Einstein to Hawking. Springer (1995)

    Google Scholar 

  34. Visser, M.: The Quantum physics of chronology protection. In: Workshop on Conference on the Future of Theoretical Physics and Cosmology in Honor of Steven Hawking’s 60th Birthday Cambridge, England, January 7-10, 2002, pp. 161–176 (2002). URL http://alice.cern.ch/format/showfull?sysnb=2303505

  35. Visser M, Bassett B, Liberati S. Superluminal censorship. Nucl. Phys. Proc. Suppl. 2000;88:267–70.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge that the research reported here was done also in collaboration with A. Coutant, S. Finazzi and R. Parentani. S.L. also wish to acknowledge the John Templeton Foundation for the supporting grant #51876. C.B. acknowledge support provided by the Spanish MINECO through the project FIS2014-54800-C2-1 (with FEDER contribution), and by the Junta de Andalucìa through the project FQM219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barceló .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Barceló, C., Liberati, S. (2017). Probing Faster than Light Travel and Chronology Protection with Superluminal Warp Drives. In: Lobo, F. (eds) Wormholes, Warp Drives and Energy Conditions. Fundamental Theories of Physics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-55182-1_12

Download citation

Publish with us

Policies and ethics