Skip to main content

Using ROS in Multi-robot Systems: Experiences and Lessons Learned from Real-World Field Tests

  • Chapter
  • First Online:
Robot Operating System (ROS)

Abstract

This chapter presents a series of experiences and lessons learned during several implementations and real-world tests of ROS-based Multi-Robot Systems. It also describes, analyses and compares several ROS components relevant for these applications, taking into account the scenarios where they can be used. Also, some general issues of importance of Multi-Robot Systems on real-world, such as software and communications architectures, types of information shared are described in detail. Finally, the difficulties and specific challenges that arose when using a Multi-Robot Systems for any application will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://multirobotsystems.org/.

  2. 2.

    http://www.sei.cmu.edu/architecture/.

  3. 3.

    http://wiki.ros.org/multimaster_experimental.

  4. 4.

    http://wiki.ros.org/multimaster.

  5. 5.

    http://wiki.ros.org/socrob_multicast.

  6. 6.

    http://wiki.ros.org/wifi_comm.

  7. 7.

    http://wiki.ros.org/adhoc_communication.

  8. 8.

    http://wiki.ros.org/multimaster_fkie.

  9. 9.

    http://wiki.ros.org/rocon_multimaster.

  10. 10.

    http://wiki.ros.org/ardrone_autonomy.

  11. 11.

    http://wiki.ros.org/asctec_drivers.

  12. 12.

    http://wiki.ros.org/arni.

References

  1. Arai, T., E. Pagello, and L.E. Parker. 2002. Guest editorial advances in multirobot systems. IEEE Transactions on Robotics and Automation 18 (5): 655–661.

    Article  Google Scholar 

  2. Barrientos, A., J. Colorado, J.d. Cerro, A. Martinez, C. Rossi, Sanz D, and Valente J. 2011. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. Journal of Field Robotics 28 (5): 667–689. doi:10.1002/rob.20403.

  3. Berman, E.S., M. Fladeland, J. Liem, R. Kolyer, and M. Gupta. 2012. Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sensors and Actuators B: Chemical 169: 128–135.

    Article  Google Scholar 

  4. Brüggemann, B., D. Wildermuth, and F.E. Schneider. 2016. Search and Retrieval of Human Casualties in Outdoor Environments with Unmanned Ground Systems—System Overview and Lessons Learned from ELROB 2014, 533–546. Cham: Springer International Publishing. doi:10.1007/978-3-319-27702-8_35.

    Google Scholar 

  5. Brumana, R., D. Oreni, L. Van Hecke, L. Barazzetti, M. Previtali, F. Roncoroni, and R. Valente. 2013. Combined geometric and thermal analysis from uav platforms for archaeological heritage documentation. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-5/W1, 49–54. http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5-W1/49/2013/.

  6. Cai, Y., and S.X. Yang. 2012. A survey on multi-robot systems. World Automation Congress (WAC) 2012: 1–6.

    Google Scholar 

  7. Cao, Y.U., A.S. Fukunaga, and A. Kahng. 1997. Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4 (1): 7–27. doi:10.1023/A:1008855018923.

    Article  Google Scholar 

  8. Dorigo, M., D. Floreano, L.M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, et al. 2013. Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20 (4): 60–71.

    Article  Google Scholar 

  9. Dudek, G., M.R.M. Jenkin, E. Milios, and D. Wilkes. 1996. A taxonomy for multi-agent robotics. Autonomous Robots 3 (4): 375–397. doi:10.1007/BF00240651.

    Article  Google Scholar 

  10. Engel, J., J. Sturm, and D. Cremers. 2014. Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robotics and Autonomous Systems 62 (11): 1646–1656.

    Article  Google Scholar 

  11. Farinelli, A., L. Iocchi, and D. Nardi. 2004. Multirobot systems: a classification focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34 (5): 2015–2028.

    Article  Google Scholar 

  12. Fu, Y., X. Wang, H. Zhu, and Y. Yu. 2016. Parameters optimization of multi-uav formation control method based on artificial physics. In 2016 35th Chinese Control Conference (CCC), 2614–2619.

    Google Scholar 

  13. Garzón-Ramos, D., M.G. Oviedo, and A. Barrientos. 2016. Protección multi-robot de infraestructuras: Un enfoque cooperativo para entornos con información limitada. In XXXVII Jornadas de Automática.

    Google Scholar 

  14. Garzón, M., J.a. Valente, J.J. Roldán, L. Cancar, A. Barrientos, and J. Del Cerro. 2015. A multirobot system for distributed area coverage and signal searching in large outdoor scenarios. Journal of Field Robotics, n/a–n/a. doi:10.1002/rob.21636.

  15. Garzón, M., J. Valente, D. Zapata, and A. Barrientos. 2013. An aerial-ground robotic system for navigation and obstacle mapping in large outdoor areas. Sensors 13 (1): 1247–1267. http://www.mdpi.com/1424-8220/13/1/1247.

  16. Gautam, A., and S. Mohan. 2012. A review of research in multi-robot systems. In 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS), 1–5.

    Google Scholar 

  17. Gerkey, B.P., and M.J. Matarić. 2004. A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research 23 (9): 939–954. http://ijr.sagepub.com/content/23/9/939.abstract.

  18. Hernández, E., A. Barrientos, and J. del Cerro. 2014. Selective smooth fictitious play: An approach based on game theory for patrolling infrastructures with a multi-robot system. Expert Systems with Applications 41 (6): 2897–2913. http://www.sciencedirect.com/science/article/pii/S0957417413008403.

  19. Hernández, E., J. del Cerro, and A. Barrientos. 2013. Game theory models for multi-robot patrolling of infrastructures. International Journal of Advanced Robotic Systems 10.

    Google Scholar 

  20. Iocchi, L., D. Nardi, and M. Salerno. 2001. Reactivity and Deliberation: A Survey on Multi-Robot Systems. Balancing Reactivity and Social Deliberation in Multi-Agent Systems: From RoboCup to Real-World Applications, 9–32. Berlin: Springer. doi:10.1007/3-540-44568-4_2.

    Chapter  Google Scholar 

  21. Khamis, A., A. Hussein, and A. Elmogy. 2015. Multi-robot Task Allocation: A Review of the State-of-the-Art. Cooperative Robots and Sensor Networks, 31–51. Cham: Springer International Publishing. doi:10.1007/978-3-319-18299-5_2.

    Google Scholar 

  22. Mohammed, A., F. Stolzenburg, and U. Furbach. 2010. Multi-robot systems: Modeling, specification, and model checking. INTECH Open Access Publisher.

    Google Scholar 

  23. Mosteo, A.R., L. Montano, and M.G. Lagoudakis. 2008. Multi-robot routing under limited communication range. IEEE International Conference on Robotics and Automation, ICRA 2008, 1531–1536.

    Google Scholar 

  24. Murphy, R.R. 2014. Disaster Robotics. Cambridge: The MIT Press.

    Google Scholar 

  25. Rango, A., A. Laliberte, J.E. Herrick, C. Winters, K. Havstad, C. Steele, and D. Browning. 2009. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing 3: 033542.

    Article  Google Scholar 

  26. Roldán, J.J., G. Joossen, D. Sanz, J. del Cerro, and A. Barrientos. 2015. Mini-uav based sensory system for measuring environmental variables in greenhouses. Sensors 15 (2): 3334–3350.

    Article  Google Scholar 

  27. Roldán, J.J., P. Garcia-Aunon, M. Garzón, J. de León, J. del Cerro, and A. Barrientos. 2016. Heterogeneous multi-robot system for mapping environmental variables of greenhouses. Sensors 16 (7): 1018. http://www.mdpi.com/1424-8220/16/7/1018.

  28. Ruiz-Larrea, A., J.J. Roldán, M. Garzón, J. del Cerro, and A. Barrientos. 2016. A ugv approach to measure the ground properties of greenhouses. Robot 2015: Second Iberian Robotics Conference, 3–13. Springer.

    Google Scholar 

  29. Shaw, M., and D. Garlan. 1996. Software Architecture: Perspectives on an Emerging Discipline. Englewood Cliffs: Prentice Hall. Prentice Hall Ordering Information.

    MATH  Google Scholar 

  30. Spiess, T., J. Bange, M. Buschmann, and P. Vörsmann. 2007. First application of the meteorological mini-uav’m2av’. Meteorologische Zeitschrift 16 (2): 159–169.

    Article  Google Scholar 

  31. Valente, J.a., D. Sanz, A. Barrientos, J.d. Cerro, A. Ribeiro, and C. Rossi. 2011. An air-ground wireless sensor network for crop monitoring. Sensors 11 (6): 6088. http://www.mdpi.com/1424-8220/11/6/6088.

  32. Valente, J., J. Del Cerro, A. Barrientos, and D. Sanz. 2013. Aerial coverage optimization in precision agriculture management: A musical harmony inspired approach. Computers and Electronics in Agriculture 99: 153–159.

    Article  Google Scholar 

  33. Valente, J., D. Sanz, J. Del Cerro, A. Barrientos, and M.Á. de Frutos. 2013. Near-optimal coverage trajectories for image mosaicing using a mini quad-rotor over irregular-shaped fields. Precision Agriculture 14 (1): 115–132.

    Article  Google Scholar 

  34. White, B.A., A. Tsourdos, I. Ashokaraj, S. Subchan, and R. Żbikowski. 2008. Contaminant cloud boundary monitoring using network of uav sensors. Sensors Journal, IEEE 8 (10): 1681–1692.

    Article  Google Scholar 

  35. Yim, M., W.M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G.S. Chirikjian. 2007. Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics Automation Magazine 14 (1): 43–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Garzón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Garzón, M. et al. (2017). Using ROS in Multi-robot Systems: Experiences and Lessons Learned from Real-World Field Tests. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 707. Springer, Cham. https://doi.org/10.1007/978-3-319-54927-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54927-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54926-2

  • Online ISBN: 978-3-319-54927-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics