Skip to main content

Biochemistry and Physiology of Vitamins in Euglena

  • Chapter
  • First Online:
Euglena: Biochemistry, Cell and Molecular Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 979))

Abstract

Euglena gracilis Z requires vitamins B1 and B12 for growth. It takes up and accumulates large amounts of these exogenous vitamins through energy-dependent active transport systems. Except for these essential vitamins, E. gracilis Z has the ability to synthesize all human vitamins. Euglena synthesizes high levels of antioxidant vitamins such as vitamins C and E, and, thus, are used as nutritional supplements for humans and domestic animals. Methods to effectively produce vitamins in Euglena have been investigated.

Previous biochemical studies indicated that E. gracilis Z contains several vitamin-related novel synthetic enzymes and metabolic pathways which suggests that it is a highly suitable organism for elucidating the physiological functions of vitamins in comparative biochemistry and biological evolution. E. gracilis Z has an unusual biosynthetic pathway for vitamin C, a hybrid of the pathways found in animals and plants. This chapter presents up-to-date information on the biochemistry and physiological functions of vitamins in this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Acyl-carrier protein

AdoB12:

Adenosylcobalamin

ALase:

Aldonolactonase

AsA:

L-ascorbic acid

B12:

Vitamin B12

cADPR:

Cyclic ADP-ribose

cAMP:

Cyclic AMP

CN-B12:

Cyanocobalamin

CoA:

co-enzyme A

DAsA:

Dehydroascorbate

D-GalUA:

D-galacturonate

D-GlcUA:

D-glucuronate

D-Man:

D-mannose

DXP:

1-deoxy-D-xylulose-5-phosphate

IF:

Intrinsic factor

L-Gal:

L-galactose

L-GalA:

L-galactonate

L-GalL:

L-galactono-1,4-lactone

L-GulA:

L-gulonate

L-GulL:

L-gulono-1,4-lactone

MCM:

Methylmalonyl-CoA mutase

MDAsA:

Monodehydroascorbate

MeB12:

Methylcobalamin

MetH:

Methionine synthase

MMAA:

Methylmalonic aciduria type A protein

MVA:

Mevalonate

NAADP:

Nicotinic acid adenine dinucleotide phosphate

NADK:

NAD+ kinase

OH-B12:

Hydroxocobalamin

PABA:

p-aminobenzoate

PL:

Pyridoxal

PLP:

Pyridoxal-5′-phosphate

PM:

Pyridoxamine

PMP:

Pyridoxamine-5′-phospahte

PN:

Pyridoxine

PNP:

Pyridoxine-5′-phoshate

RNR:

Ribonucleotide reductase

SHMT:

Serine hydroxymethyltransferase

TC:

Transcobalamin II

TDP:

Thiamine diphosphate

TMP:

Thiamine monophosphate

TTP:

Thiamine triphosphate

References

  • Afiukwa CA, Ogbonna JC (2007) Effects of mixed substrates on growth and vitamin production by Euglena gracilis. African J Biotechnol 6:2612–2615

    Article  CAS  Google Scholar 

  • Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  CAS  PubMed  Google Scholar 

  • Ahn IP, Kim S, Lee YH (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138:1505–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anding C, Ourisson G (1973) Presence of ergosterol in light-grown and dark-grown Euglena gracilis Z. Eur J Biochem 34:345–346

    Article  CAS  PubMed  Google Scholar 

  • Atkinson JP, Weiss A, Ito M, Kelly J, Parker CW (1979) Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes. J Cyclic Nucleotide Res 5:107–123

    CAS  PubMed  Google Scholar 

  • Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167

    Article  CAS  PubMed  Google Scholar 

  • Baker RB, McLaughlin JJA, Hutner SH, DeAngelis B, Feingold S, Frank O, Baker H (1981) Water-soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis, and Tetrahymena thermophila. Arch Microbiol 129:310–313

    Article  CAS  Google Scholar 

  • Banerjee RV, Matthews RG (1990) Cobalamin-dependent methionine synthase. FASEB J 4:1450–1459

    CAS  PubMed  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basset GJC, Quinlivan EP, Gregory JF III, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects For biofortification. Crop Sci 45:449–453

    Article  CAS  Google Scholar 

  • Begley TP, Downs DM, Ealick SE, McLafferty FW, Van Loon AP, Taylor S, Campobasso N, Chiu HJ, Kinsland C, Reddick JJ, Xi J (1999) Thiamin biosynthesis in prokaryotes. Arch Microbiol 171:293–300

    Article  CAS  PubMed  Google Scholar 

  • Begley TP, Ealick SE, McLafferty FW (2012) Thiamin Biosynthesis - still yielding fascinating biological chemistry. Biochem Soc Trans 40:555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrin JG, Pierrugues O, Brutesco C, Alonso B, Montillet JL, Roby D, Kazmaier M (2005) Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol Gen Genomics 273:10–19

    Article  CAS  Google Scholar 

  • Bradbeer C (1971) Transport of vitamin B12 in Ochromonas malhamensis. Arch Biochem Biophys 144:184–192

    Article  CAS  PubMed  Google Scholar 

  • Bradbeer C, Woodrow ML (1976) Transport of vitamin B12 in Escherichia coli: energy-dependence. J Bacteriol 128:99–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt RD, Pryce RJ, Anding C, Ourisson G (1970) Sterol biosynthesis in Euglena gracilis Z. Comparative study of free and bound sterols in light and dark grown Euglena gracilis Z. Eur J Biochem 17:344–349

    Article  CAS  PubMed  Google Scholar 

  • Bre MH, Diamond J, Jacques R (1975) Factors mediating the vitamin B12 requirement of Euglena. J Protozool 22:432–434

    Article  CAS  Google Scholar 

  • Brown GM (1962) The biosynthesis of folic acid II. Inhibition by sulfonamides. J Biol Chem 237:536–540

    CAS  PubMed  Google Scholar 

  • Carballo-Cardenas EC, Tuan PM, Janssen M, Wijffels RH (2003) Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomolecular Eng 20:139–147

    Article  CAS  Google Scholar 

  • Carell EF (1969) Studies on chloroplast development and replication in Euglena. I. Vitamin B12 and chloroplast replication. J Cell Biol 41:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carell EF, Seeger JW Jr (1980) Ribonucleotide reductase activity in vitamin B12-deficient Euglena gracilis. Biochem J 188:573–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carell EF, Johnston PL, Christopher AR (1970) Vitamin B12 and the macromolecular composition of Euglena. J Cell Biol 47:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carré IA, Edmunds LN Jr (1992) Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci 104:1163–1173

    Google Scholar 

  • Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC (2005) NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59:553–564

    Article  CAS  PubMed  Google Scholar 

  • Chai MF, Wei PC, Chen QJ, An R, Chen J, Yang S, Wang XC (2006) NADK3, a novel cytoplasmic source of NADPH, is required under conditions of oxidative stress and modulates abscisic acid responses in Arabidopsis. Plant J 47:665–674

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Yates Z, Veysey M, Heo YR, Lucock M (2014) Contemporary Issues Surrounding Folic Acid Fortification Initiatives. Prev Nutr Food Sci 19:247–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook JR (1968) The cultivation and growth of Euglena. In: Buetow DE (ed) The biology of Euglena, vol 1. Academic Press, New York, pp 243–314

    Google Scholar 

  • Cramer M, Myers J (1952) Growth and photosynthetic characteristics of Euglena gracilis. Arch Microbiol 17:384–402

    CAS  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosti P, Bianchetti R (1983) Identification and cell level of folate derivatives from growing cultures of streptomycin-bleached Euglena gracilis. Plant Sci Lett 31:205–214

    Article  CAS  Google Scholar 

  • Crosti P, Lorusso V, Bianchetti R (1984) Folate cell content and distribution during the culture cycle of Euglena gracilis. Plant Sci Lett 34:363–368

    Article  CAS  Google Scholar 

  • Crosti P, Gambini A, Bianchetti R (1987) Repression of folate synthesis in the logarithmic phase of Euglena gracilis growth. Plant Sci 50:91–86

    Google Scholar 

  • Delo J, Ernst-Fonberg ML, Bloch K (1971) Fatty acid synthases from Euglena gracilis. Arch Biochem Biophys 143:384–391

    Article  CAS  PubMed  Google Scholar 

  • Di Nello RK, Ernst-Fonberg ML (1973) Purification and partial characterization of an acyl carrier protein from Euglena gracilis. J Biol Chem 248:1707–1711

    CAS  Google Scholar 

  • Dolphin WD (1970) Photoinduced carotenogenesis in chlorotic Euglena gracilis. Plant Physiol 46:685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dörmann P (2007) Functional diversity of tocochromanols in plants. Planta 225:269–276

    Article  PubMed  CAS  Google Scholar 

  • Evers A, Ernst-Fongerg ML (1974) Differential responses of two carboxylases from Euglena to the state of chloroplast development. FEBS Lett 46:234–235

    Article  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566

    Article  CAS  PubMed  Google Scholar 

  • Fenton WA, Ambani LM, Rosenberg LE (1976) Uptake of hydroxocobalamin by rat liver mitochondria. Binding to a mitochondrial protein. J Biol Chem 251:6616–6623

    CAS  PubMed  Google Scholar 

  • Fenton WA, Hack AM, Willard HF, Gertler A, Rosenberg LE (1982) Purification and properties of methylmalonyl coenzyme a mutase from human liver. Arch Biochem Biophys 214:815–826

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Schott AK, Römisch W, Ramsperger A, Augustin M, Fidler A, Bacher A, Richter G, Huber R, Eisenreich W (2004) Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea. J Mol Biol 343:267–278

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Haase I, Feicht R, Schramek N, Köhler P, Schieberle P, Bacher A (2005) Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin. Biol Chem 386:417–428

    Article  CAS  PubMed  Google Scholar 

  • Frenkel EP, Mukherjee A, Hackenbrock CR, Srere PA (1976) Biochemical and ultrastructural hepatic changes during vitamin B12 deficiency in animals and man. J Biol Chem 251:2147–2154

    CAS  PubMed  Google Scholar 

  • Fujita T, Aoyagi H, Ogbonna JC, Tanaka H (2008) Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl Microbiol Biotechnol 79:371–378

    Article  CAS  PubMed  Google Scholar 

  • Gerster H (1997) Vitamin A-functions, dietary requirements and safety in humans. Int J Vit Nutr Res 67:71–90

    CAS  Google Scholar 

  • Giancaspero TA, Locato V, de Pinto MC, De Gara L, Barile M (2009) The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status. FEBS J 276:219–231

    Article  CAS  PubMed  Google Scholar 

  • Gleason FK, Hogenkamp HPC (1970) Ribonucleotide reductase from Euglena gracilis, a deoxyadenosylcobalamin-dependent enzyme. J Biol Chem 245:4894–4899

    CAS  PubMed  Google Scholar 

  • Goldberg I, Bloch K (1972) Fatty acid synthetases in Euglena gracilis. J Biol Chem 247:7349–7357

    CAS  PubMed  Google Scholar 

  • Goyer A (2010) Thiamine in plants: Aspects of its metabolism and functions. Phytochemistry 71:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Grimm P, Risse JM, Cholewa D, Müller JM, Beshay U, Friehs K, Flaschel E (2015) Applicability of Euglena gracilis for biorefineries demonstrated by theproduction of α-tocopherol and paramylon followed by anaerobicdigestion. J Biotechnol 215:72–79

    Article  CAS  PubMed  Google Scholar 

  • Grün M, Loewus FA (1984) L-Ascorbic-acid biosynthesis in the euryhaline diatom Cyclotella cryptica. Planta 160:6–11

    Article  PubMed  Google Scholar 

  • Haase I, Gräwert T, Illarionov B, Bacher A, Fisher M (2014) Recent advantage in riboflavin biosynthesis. Methods Mol Biol 1146:15–40

    Article  CAS  PubMed  Google Scholar 

  • Hamilton FD (1974) Ribonucleotide reductase from Euglena gracilis. A 5′-deoxyadenosylcobalamin-dependent enzyme. J Biol Chem 249:4428–4434

    CAS  PubMed  Google Scholar 

  • Han YS, Bratt JM, Hogenkamp HPC (1984) Purification and characterization of methylmalonyl-CoA mutase from Ascaris lumbricodes. Comp Biochem Physiol 78B:41–45

    CAS  Google Scholar 

  • Hashida S, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103:819–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933

    Article  CAS  PubMed  Google Scholar 

  • Hellmann H, Mooney S (2010) Vitamin B6: A Molecule for Human Health? Molecules 15:442–459

    Article  CAS  PubMed  Google Scholar 

  • Helsper JP, Kagan L, Hilby CL, Maynard TM, Loewus FA (1982) L-Ascorbic acid biosynthesis in Ochromonas danica. Plant Physiol 69:465–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N, Seto H, Dairi T (2008) An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321:1670–1673

    Article  CAS  PubMed  Google Scholar 

  • Hosotani K, Kitaoka S (1984) Determination of provitamin A in Euglena gracilis Z by high performance liquid chromatography and changes of the contents under various culture conditions. J Jpn Soc Nutr Food Sci 37:519–524

    Article  CAS  Google Scholar 

  • Iacopetta D, Carrisi C, De Filippis G, Calcagnile VM, Cappello AR, Chimento A, Curcio R, Santoro A, Vozza A, Dolce V, Palmieri F, Capobianco L (2010) The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster. FEBS J 277:1172–1181

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1984) Fatty acid synthesis in mitochondria of Euglena gracilis. Eur J Biochem 142:121–126

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Miyatake K, Nakano Y (1986) Kitaoka S (1986) Purification and some properties of short chain-length specific trans-2-enoyl-CoA reductase in mitochondria of Euglena gracilis. J Biochem 100:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262:9130–9135

    CAS  PubMed  Google Scholar 

  • Inui H, Yamaji R, Saidoh H, Miyatake K, Nakano Y, Kitaoka S (1991) Pyruvate:NADP+ oxidoreductase from Euglena gracilis: limited proteolysis of the enzyme with trypsin. Arch Biochem Biophys 286:270–276

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Ohya O, Isegawa Y, Kitaoka S, Miyatake K, Nakano Y (1996) Effect of cobalamin deficiency on the biosynthesis of phosphatidylcholine in Euglena gracilis. J Euk Microbiol 43:177–180

    Article  CAS  Google Scholar 

  • Isegawa Y, Nakano Y, Kitaoka S (1984) Conversion and distribution of cobalamin in Euglena gracilis Z, with special reference to its location and probable function within chloroplasts. Plant Physiol 76:814–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isegawa Y, Nakano Y, Kitaoka S (1987) Photosynthesis of Euglena gracilis under cobalamin-sufficient and -limited growing conditions. Plant Physiol 84:609–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isegawa Y, Watanabe F, Kitaoka S, Nakano Y (1994) Subcellular distribution of cobalamin-dependent methionine synthase in Euglena gracilis Z. Phytochemistry 35:59–61

    Article  CAS  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Masumoto I, Iwasa N, Nishikawa H, Sawa Y, Shibata H, Nakamura A, Yabuta Y, Shigeoka S (2006) Functional characterization of D-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis. Biosci Biotechnol Biochem 70:2720–2726

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T, Shigeoka S (2008) The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase. J Biol Chem 283:31133–31141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71–98

    Article  CAS  PubMed  Google Scholar 

  • Julliard JH, Douce R (1991) Biosynthesis of the thiazole moiety of thiamin (vitamin B1) in higher plant chloroplasts. Proc Natl Acad Sci U S A 88:2042–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond Ser B Biol Sci 365:729–748

    Article  CAS  Google Scholar 

  • Kenley JS, Leighton M, Bradbeer C (1978) Transport of vitamin B12 in Escherichia coli. Corrinoid specificity of the outer membrane receptor. J Biol Chem 253:1341–1346

    CAS  PubMed  Google Scholar 

  • Kitaoka S, Nakano Y, Miyatake K, Yokota A (1989) Enzymes and their functional location. In: Buetow DE (ed) Biology of Euglena, vol 4. Academic Press, New York, pp 1–135

    Google Scholar 

  • Kiyota M, Numayama N, Goto K (2006) Circadian rhythms of the L-ascorbic acid level in Euglena and spinach. J Photochem Photobiol B 84:197–203

    Article  CAS  PubMed  Google Scholar 

  • Kolhouse JF, Allen RH (1977) Absorption, plasma transport, and cellular retention of cobalamin analogues in the rabbit. Evidence for the existence of multiple mechanisms that prevent the absorption and tissue dissemination of naturally occurring cobalamin analogues. J Clin Invest 60:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsky NI, Goldsmith TH (1960) The carotenoids of the flagellated alga, Euglena gracilis. Arch Biochem Biophys 91:271–279

    Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97:13172–13177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laval-Martin DL, Carré IA, Barbera SJ, Edmunds LN Jr (1990a) Circadian variations in the affinities of NAD kinase and NADP phosphatase for their substrates, NAD+ and NADP+, in dividing and nondividing cells of the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z). Chronobiol Int 7:99–105

    Article  CAS  PubMed  Google Scholar 

  • Laval-Martin DL, Carré IA, Barbera SJ, Edmunds LN Jr (1990b) Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the Achlorophyllous ZC mutant of Euglena gracilis Klebs (Strain Z). Arch Biochem Biophys 276:433–441

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CC, Stubbe J (1998) The function of adenosylcobalamin in the mechanism of ribonucleotide triphosphate reductase from Lactobacillus leichimannii. Curr Opin Chem Biol 2:650–655

    Article  CAS  PubMed  Google Scholar 

  • Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA (1996) Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Human Mol Genet 5:1867–1874

    Article  CAS  Google Scholar 

  • Lee HC (2001) Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol 41:317–345

    Article  PubMed  Google Scholar 

  • Leedale GF, Messue BJD, Pringsheim EG (1965) Structure and physiology of Euglena spirogyra. Arch Mikrobiol 50:133–155

    Article  CAS  PubMed  Google Scholar 

  • Lefort-Tran M, Bre MH, Pouphile M, Manigault P (1987) DNA flow cytometery of control Euglena and cell cycle blockage of vitamin B12-starved cells. Cytometry 8:46–54

    Article  CAS  PubMed  Google Scholar 

  • Lindhurst MJ, Fiermonte G, Song S, Struys E, De Leonardis F, Schwartzberg PL, Chen A, Castegna A, Verhoeven N, Mathews CK, Palmieri F, Biesecker LG (2006) Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc Natl Acad Sci U S A 103:15927–15932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londesborough JC, Webster Jr LT (1974) Fatty acyl-CoA syntetases. In The enzymes (Boyer PD), vol. 10, Academic Press, New York, pp. 469–488.

    Google Scholar 

  • Mabey T, Honsawek S (2015) Role of vitamin D in osteoarthritis: molecular, cellular, and clinical perspectives. Int J Endocrinol 3839

    Google Scholar 

  • Margueritta S, El Asmar MS, Naoum JN, Arbid EJ (2014) Vitamin K dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: A review. Oman Med J 29:172–177

    Google Scholar 

  • Marobbio CM, Vozza A, Harding M, Bisaccia F, Palmieri F, Walker JE (2002) Identification and reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. EMBO J 21:5653–5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K, Shigeoka S (2012) An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. Plant Cell Physiol 53:1106–1116

    Article  CAS  PubMed  Google Scholar 

  • Maruyama J, Yamaoka S, Matsuo I, Tsutsumi N, Kitamoto K (2012) A newly discovered function of peroxisomes: involvement in biotin biosynthesis. Plant Signal Behav 7: 1589–1593

    Google Scholar 

  • Masuda T, Yoshino M, Nishizaki I, Tai A, Osaki H (1980) Purification and properties of allothreonine aldolase from maise seedlings. Agric Biol Chem 44:2199–2201

    CAS  Google Scholar 

  • Masuda T, Sakamoto M, Nishizaki I, Hayashi H, Yamamoto M, Wada H (1987) Affinity purification and characterization of serine hydroxymethyltransferase from rat liver. J Biochem 101:643–652

    Article  CAS  PubMed  Google Scholar 

  • Masuda W, Takenaka S, Inageda K, Nishina H, Takahashi K, Katada T, Tsuyama S, Inui H, Miyatake K, Nakano Y (1997a) Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis. FEBS Lett 405:104–106

    Article  CAS  PubMed  Google Scholar 

  • Masuda W, Takenaka S, Tsuyama S, Tokunaga M, Yamaji R, Inui H, Miyatake K, Nakano Y (1997b) Inositol 1,4,5-trisphosphate and cyclic ADP-ribose mobilize Ca2+ in a protest, Euglena gracilis. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 118:279–283

    Article  CAS  PubMed  Google Scholar 

  • Masuda W, Takenaka S, Tsuyama S, Inui H, Miyatake K, Nakano Y (1999) Purification and characterization of ADP-ribosul cyclase from Euglena gralisis. J Biochem 125:449–453

    Article  CAS  PubMed  Google Scholar 

  • McGuire JJ, Bertino JR (1981) Enzymatic synthesis and function of folylpolyglutamates. Mol Cell Biochem 38:19–48

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto E, Watanabe F, Yamaguchi Y, Takenaka H, Nakano Y (2004) Purification and characterization of methyl malonyl-CoA mutase from a photosynthetic coccolithophorid alga, Pleurochrysis carterae. Comp Biochem Physiol B 138:163–167

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto E, Tanioka Y, Yukino Y, Hayashi M, Watanabe F, Nakano Y (2007) Occurrence of 5′-deoxyadenosylcobalamin and its physiological function as the coenzyme of methyl malonyl-CoA mutase in a marine eukaryotic microorganism, Schizochytrium limacinum SR21. J Nutr Sci Vitaminol 53:471–475

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto E, Tanioka Y, Nishizawa-Yokoi A, Yabuta Y, Ohnishi K, Misono H, Shigeoka S, Nakano Y, Watanabe F (2010) Characterization of methylmalonyl-CoA mutase involved in the propionate photoassimilation of Euglena gracilis Z. Arch Microbiol 192:437–446

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M, Inui H, Yamaji R, Yamamoto T, Takenaka S, Ueda M, Nakano Y, Miyatake K (2000) The origin of pyruvate:NADP+ oxidoreductase in mitochondria of Euglena gracilis. FEBS Lett 479:155–157

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M, Takenaka S, Ueda M, Inui H, Nakano Y, Miyatake K (2003) Pyruvate:NADP+ oxidoreductase is stabilized by its cofactor, thiamin pyrophosphate, in mitochondria of Euglena gracilis. Arch Biochem Biophys 411:183–188

    Article  CAS  PubMed  Google Scholar 

  • Nishikimi M, Yagi K (1996) Biochemistry and molecular biology of ascorbic acid biosynthesis. Subcell Biochem 25:17–39

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K (2006) Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 72:30–40

    Article  CAS  PubMed  Google Scholar 

  • Nowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797:1587–1605

    Article  CAS  PubMed  Google Scholar 

  • Ochi H, Shigeoka S, Watanabe F, Nakano Y, Kitaoka S (1988a) Changes of vitamin B2 and B6 contents during growth of Euglena gracilis. Vitamins (Japan) 62:515–518

    CAS  Google Scholar 

  • Ochi H, Watanabe F, Shigeoka S, Nakano Y, Kitaoka S (1988b) Water-soluble vitamin contents of Euglena gracilis Z. J Jpn Soc Nutr Food Sci 41:495–500

    Google Scholar 

  • Ogbonna JC (2009) Microbiological production of tocopherols: current state and prospects. Appl Microbiol Biotechnol 84:217–225

    Article  CAS  PubMed  Google Scholar 

  • Ogbonna JC, Tomiyama S, Tanaka H (1999) Production of α-tocopherol by sequential heterotrophic–photoautotrophic cultivation of Euglena gracilis. J Biotechnol 70:213–221

    Article  CAS  Google Scholar 

  • Pollak N, Niere M, Ziegler M (2007) NAD kinase levels control the NADPH concentration in human cells. J Biol Chem 282:33562–33571

    Article  CAS  PubMed  Google Scholar 

  • Pou de Crescenzo MA, Goto K, Carré IA, Laval-Martin DL (1997) Regulation of a NAD+ kinase activity isolated from asynchronous cultures of the achlorophyllous ZC mutant of Euglena gracilis. Z Naturforsch C 52:623–635

    CAS  PubMed  Google Scholar 

  • Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J Exp Bot 59:4133–4143

    Article  CAS  PubMed  Google Scholar 

  • Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805–7812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rawat R, Sandoval FJ, Wei Z, Winkler R, Roje S (2011) An FMN hydrolase of the haloacid dehalogenase superfamily is active in plant chloroplasts. J Biol Chem 286:42091–42098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebou E (2013) Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients 5:3563–3581

    Article  CAS  Google Scholar 

  • Reichard P (1993) The anaerobic ribonucleotide reductase from Escherichia coli. J Biol Chem 268:8383–8386

    CAS  PubMed  Google Scholar 

  • Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126:129–142

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172

    Article  PubMed  CAS  Google Scholar 

  • Roje S (2007) Vitamin B biosynthesis in plants. Phytochemistry 68:1904–1921

    Article  CAS  PubMed  Google Scholar 

  • Ross GIM (1952) Vitamin B12 assay in body fluids using Euglena gracilis. J Clin Pathol 5:250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggeri BA, Gray RJH, Watkins TR, Tomlins RI (1985) Effect of low-temperature acclimation and oxygen stress on tocopherol production in Euglena gracilis Z. Appl Environ Microbiol 50:1404–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Running JA, Severson DK, Schneider KJ (2002) Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. J Ind Microbiol Biotechnol 29:93–98

    Article  CAS  PubMed  Google Scholar 

  • Running JA, Burlingame RP, Berry A (2003) The pathway of L-ascorbic acid biosynthesis in the colourless microalga Prototheca moriformis. J Exp Bot 54:1841–1849

    Article  CAS  PubMed  Google Scholar 

  • Saint-Macary ME, Barbisan C, Gagey MJ, Frelin O, Beffa R, Lebrun MH, Droux M (2015) Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae. PLos One: pone.0111108.

    Google Scholar 

  • Sakamoto M, Masuda T, Yanagimoto Y, Nakano Y, Kitaoka S (1991) Purification and characterization of cytosolic serine hydroxylmethyltransferase from Euglena gracilis Z. Agric Biol Chem 55:2243–2249

    CAS  Google Scholar 

  • Sakamoto M, Masuda T, Yanagimoto Y, Nakano Y, Kitaoka S, Tanigawa Y (1996) Purification and characterization of serine hydroxylmethyltransferase from mitochondria of Euglena gracilis Z. Biosci Biotechnol Biolchem 60:1941–1944

    Article  CAS  Google Scholar 

  • Sandoval FJ, Roje S (2005) An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J Biol Chem 280:38337–38345

    Article  CAS  PubMed  Google Scholar 

  • Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize fad in plastids. J Biol Chem 283:30890–30900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang Y, Barbosa JM, Wu H, Locy RD, Singh NK (2007) Identification of a pyridoxine (pyridoxamine) 5'-phosphate oxidase from Arabidopsis thaliana. FEBS Lett 581:344–348

    Article  CAS  PubMed  Google Scholar 

  • Sarhan F, Houde M, Cheneval JP (1980) The role of vitamin B12 binding in the uptake of the vitamin by Euglena gracilis. J Protozool 27:235–238

    Article  CAS  Google Scholar 

  • Sayed SA, Gadallah MAA (2002) Effects of shoot and root application of thiamin on salt-stressed sunflower plants. Plant Growth Regul 36:71–80

    Article  CAS  Google Scholar 

  • Seeger JW, Bentley R (1991) Phylloquinone (vitamin K1) biosynthesis in Euglena gracilis strain Z. Pytochemistry 30:3585–3589

    Article  CAS  Google Scholar 

  • Seeger JW Jr, Carell EF (1991) Respiration of Euglena gracilis grown under conditions of vitamin B12-sufficiency,—deficiency, and -replenishment. Plant Sci 79:143–148

    Article  CAS  Google Scholar 

  • Shane B (2011) Folate status assessment history: implications for measurement of biomarkers in NHANES. Am J Clin Nutr 94:337S–342S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shehata TE, Kempner ES (1979) Synchronization of division in vitamin B12-starved Euglena gracilis. J Protozool 26:626–630

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Nakano Y (1991) Characterization and molecular properties of 2-oxoglutarate decarboxylase from Euglena gracilis. Arch Biochem Biophys 288:22–28

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Nakano Y (1993) The effect of thiamin on the activation of thiamin pyrophosphate-dependent 2-oxoglutarate decarboxylase in Euglena gracilis. Biochem J 292:463–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeoka S, Yokota A, Nakano Y, Kitaoka S (1979a) The effect of illumination on the L-ascorbic acid content in Euglena gracilis z. Agric Biol Chem 43: 2053–2058

    Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1979b) The biosynthetic pathway of L-ascorbic acid in Euglena gracilis z. J Nutr Sci Vitaminol 25: 299–307

    Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1979c) Some properties and subcellular localization of L-gulono-γ-lactone dehydrogenase in Euglena gracilis z. Agric Biol Chem 43: 2187–2188

    Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1980) Occurrence of L-ascorbic acid in Euglena gracilis Z. Bull Univ Osaka Pref ser B 32:43–48

    CAS  Google Scholar 

  • Shigeoka S, Onishi T, Maeda K, Nakano Y, Kitaoka S (1986a) Occurrence of thiamine pyrophosphate-dependent 2-oxoglutarate dehydrogenase in mitochondria of Euglena gracilis. FEBS Lett 195:43–47

    Article  CAS  Google Scholar 

  • Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1986b) The contents and subcellular distribution of tocopherols in Euglena gracilis. Agric Biol Chem 50:1063–1065

    CAS  Google Scholar 

  • Shigeoka S, Onishi T, Nakano Y, Kitaoka S (1987a) Requirement for Vitamin B1 for growth of Euglena gracilis. J Gen Microbiol 133:25–30

    CAS  Google Scholar 

  • Shigeoka S, Onishi T, Kishi N, Maeda K, Ochi H, Nakano Y, Kitaoka S (1987b) Occurrence and subcellular distribution of thiamine pyrophosphokinase isozyme in Euglena gracilis. Agric Biol Chem 51:2811–2813

    CAS  Google Scholar 

  • Shigeoka S, Onishi T, Maeda K, Nakano Y, Kitaoka S (1987c) Thiamin uptake in Euglena gracilis. Biochim Biophys Acta 929:247–252

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Yasumoto R, Onishi T, Nakano Y, Kitaoka S (1987d) Properties of monodehydroascorbate reductase and dehydroascorbate reductase and their participation in the regeneration of ascorbate in Euglena gracilis. J Gen Microbiol 133:227–232

    CAS  Google Scholar 

  • Shigeoka S, Ishiko H, Nakano Y, Mitsunaga T (1992) Isolation and properties of γ-tocopherol methyltransferase in Euglena gracilis. Biochim Biophys Acta 1128:220–226

    Article  CAS  PubMed  Google Scholar 

  • Simoni RD, Criddle RS, Stumpf PK (1967) Fat metabolism in higher plants XXXI. Purification and properties of plant and bacterial acyl carrier proteins. J Biol Chem 242:573–581

    CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2001) L-ascorbic acid biosynthesis. Vitam Horm 61:241–266

    Article  CAS  PubMed  Google Scholar 

  • Spano AJ, Schiff JA (1987) Purification, properties, and cellular localization of Euglena ferredoxin-NADP reductase. Biochim Biophys Acta 894:484–498

    Article  CAS  PubMed  Google Scholar 

  • Stephan C, Renard M, Montrichard F (2000) Evidence for the existence of two soluble NAD+ kinase isoenzymes in Euglena gracilis Z. Int J Biochem Cell Biol 32:855–863

    Article  CAS  PubMed  Google Scholar 

  • Stern AI, Schiff JA, Klein HP (1960) Isolation of Ergosterol from Euglena gracilis; Distribution Among Mutant Strains. J Protozool 7:52–55

    Article  CAS  Google Scholar 

  • Stubbe J (2003) Di-iron-tyrosyl radical ribonucleotide reductases. Curr Opin Chem Biol 7:183–188

    Article  CAS  PubMed  Google Scholar 

  • Stupperich E, Nexo E (1991) Effect of the cobalt-N coordination on the cobamide recognition by the human vitamin B12 binding proteins intrinsic factor, transcobalanin and haptocorrin. Eur J Biochem 199:299–303

    Article  CAS  PubMed  Google Scholar 

  • Takahashi-Iniguez T, Garcia-Arellano H, Trujillo-Roldan MA, Flores ME (2011) Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem Biophys Res Commun 2011(404):443–447

    Article  CAS  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: Distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, beta-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53:185–190

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312

    CAS  Google Scholar 

  • Thomas G, Threlfall DR (1975) Synthesis of 3-polyprenyltoluquinols and 4-carboxy-2-polyprenylphenols by cell-free preparations of Euglena gracilis. Phytochemistry 14:2607–2615

    Article  CAS  Google Scholar 

  • Threlfall DR, Goodwin TW (1967) Nature, intracellular distribution and formation of terpenoid quinines in Euglena gracilis. Biochem J 103:573–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokunaga M, Nakano Y, Kitaoka S (1976) Preparation of physiological intact mitochondria from Euglena gracilis Z. Agric Biol Chem 40:1439–1440

    CAS  Google Scholar 

  • Torrents E, Trevisiol C, Rotte C, Hellman U, Martin W, Reichard P (2006) Euglena gracilis ribonucleotide reductase. The eukaryote class II enzyme and the possible antiquity of eukaryote B12 dependence. J Biol Chem 281:5604–5611

    Article  CAS  PubMed  Google Scholar 

  • Tripkovic L, Lambert H, Hart K, Smith CP, Bucca G, Penson S, Chope G, Hypponen E, Berry J, Vieth R, Lanham-New S (2012) Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 95:1357–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner WL, Waller JC, Vanderbeld B, Snedden WA (2004) Cloning and characterization of two NAD kinases from Arabidopsis. identification of a calmodulin binding isoform. Plant Physiol 135:1243–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vagelos PR (1973) Acyl group transfer (acyl carrier protein). In: Boyer PD (ed) The Enzymes, vol 8. Academic Press, New York, pp 155–199

    Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathway for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  PubMed  Google Scholar 

  • Varma TNS, Abraham A, Hansen IA (1961) Accumulation of 58Co vitamin B12 by Euglena gracilis. J Protozool 8:212–216

    Article  CAS  Google Scholar 

  • Velisek J, Davidek J (2000) Pantothenic acid. In: De Leenheer AP, Lambert WE, Van Bocxlaer JF (eds) Modern chromatographic analysis of vitamins. Marcel Dekker, Inc., New York, pp 555–600

    Google Scholar 

  • Waldrop GL, Holden HM, St Maurice M (2012) The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms. Protein Sci 21:1597–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther B, Karl JP, Booth SL, Boyaval P (2013) Menaquinones, bacteria, and the food supply: The relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 4:463–473

    Google Scholar 

  • Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med 232:1266–1274

    Article  CAS  Google Scholar 

  • Watanabe F, Nakano Y (1991) Comparative biochemistry of vitamin B12 (cobalamin) metabolism: biochemical diversity in the systems for intercellular cobalamin transfer and synthesis of the coenzymes. Int J Biochem 23:1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Watanabe F, Nakano Y, Kitaoka S (1987a) Purification and some properties of cytosolic cobalamin binding protein in Euglena gracilis. Biochem J 247:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe F, Nakano Y, Kitaoka S (1987b) Isolation and some properties of soluble and membrane-bound cobalamin-binding proteins of Euglena mitochondria. Arch Microbiol 149:30–35

    Google Scholar 

  • Watanabe F, Oki Y, Nakano Y, Kitaoka S (1987c) Occurrence and subcellular location of aquacobalamin reductase in Euglena gracilis. Agric Biol Chem 51:273–274

    Article  CAS  Google Scholar 

  • Watanabe F, Oki Y, Nakano Y, Kitaoka S (1987d) Purification and characterization of aquacobalamin reductase (NADPH) from Euglena gracilis. J Biol Chem 262:11514–11518

    CAS  PubMed  Google Scholar 

  • Watanabe F, Nakano Y, Kitaoka S (1988a) Subcellular location and some properties of propionyl-Coenzyme A carboxylase in Euglena gracilis Z. Comp Biochem Physiol 89B:565–568

    CAS  Google Scholar 

  • Watanabe F, Ito T, Tabuchi T, Nakano Y, Kitaoka S (1988b) Isolation of pellicular cobalamin-binding proteins of the cobalamin uptake system of Euglena gracilis. J Gen Microbiol 134:67–74

    CAS  Google Scholar 

  • Watanabe F, Nakano Y, Ochi H, Kitaoka S (1988c) Purification, some properties and possible physiological role of an extracellular cobalamin binding protein from Euglena gracilis. J Gen Microbiol 134:1385–1389

    CAS  Google Scholar 

  • Watanabe F, Oki Y, Nakano Y, Kitaoka S (1988d) Occurrence and characterization of cyanocobalamin reductase (NADPH; CN-eliminating) involved in decyanation of cyanocobalamin in Euglena gracilis. J Nutr Sci Vitaminol 34:1–10

    Article  CAS  PubMed  Google Scholar 

  • Watanabe F, Nakano Y, Tamura Y, Kitaoka S (1989) Transfer system of cobalamin from pellicle to cytosolic binding proteins in Euglena gracilis. Comp Biochem Physiol 94B:797–800

    CAS  Google Scholar 

  • Watanabe F, Nakano Y, Stupperich E (1992) Different corrinoid specificities for cell growth and the cobalamin uptake system in Euglena gracilis Z. J Gen Microbiol 138:1807–1813

    Article  CAS  Google Scholar 

  • Watanabe F, Nakano Y, Stupperich E, Ushikoshi U, Ushikoshi S, Ushikoshi I, Kitaoka S (1993a) A radioisotope dilution method for quantitation of total vitamin B12 in biological samples using isolated Euglena pellicle fragments as a solid-phase vitamin B12-binding material. Anal Chem 65:657–659

    Article  CAS  Google Scholar 

  • Watanabe F, Nakano Y, Tamura Y, Stupperich E (1993b) Corrinoid specificity of cytosolic cobalamin binding protein of Euglena gracilis. J Biochem 113:97–100

    Article  CAS  PubMed  Google Scholar 

  • Watanabe F, Tamura Y, Stupperich E, Nakano Y (1993c) Uptake of cobalamin by Euglena mitochondria. J Biochem 114:793–799

    Article  CAS  PubMed  Google Scholar 

  • Watanabe F, Yamaji R, Isegawa Y, Yamamoto T, Tamura Y, Nakano Y (1993d) Characterization of aquacobalamin reductase (NADPH) from Euglena gracilis. Arch Biochem Biophys 305:421–427

    Article  CAS  PubMed  Google Scholar 

  • Watanabe F, Abe K, Tamura Y, Nakano Y (1996) Adenosylcobalamin-dependent methylmalonyl-CoA mutase isozymes in the photosynthetic protozoon Euglena gracilis Z. Microbiology 142:2631–2634

    Article  CAS  PubMed  Google Scholar 

  • Watanabe F, Yabuta Y, Tanioka Y, Bito T (2013) Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. J Agric Food Chem 61:6769–6775

    Article  CAS  PubMed  Google Scholar 

  • Weete JD, Abril M, Blackwell M (2010) Phylogenetic Distribution of Fungal Sterols. PLoS One 5:e10899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. elife 4:e06369

    PubMed Central  Google Scholar 

  • Whistance GR, Threlfall DR (1970) Biosynthesis of phtoquinones. Biochem J 117:593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson SR, Prathalingam SR, Taylor MC, Horn D, Kelly JM (2005) Vitamin C biosynthesis in trypanosomes: a role for the glycosome. Proc Natl Acad Sci U S A 102:11645–11650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willecke K, Ritter E, Lynen F (1969) Isolation of an acyl carrier component from the multienzyme complex of yeast fatty acid synthetase. Eur J Biochem 8:503–509

    Article  CAS  PubMed  Google Scholar 

  • Wolpert JS, Ernst-Fonberg ML (1975) Dissociation and characterization of enzymes from a multienzyme complex involved in carbon dioxide fixation. Biochemistry 14:1103–1107

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Christen P, Gehring H (2011) A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. FASEB J 25:2109–2122

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial L-galactono-γ-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Takamatsu R, Kasagaki S, Watanabe F (2013) Isolation and expression of a cDNA encoding methylmalonic aciduria type A protein from Euglena gracilis Z. Metabolites 3:144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  CAS  PubMed  Google Scholar 

  • Yokota A, Hosotani K, Kitaoka S (1982) Mechanism of metabolic regulation in photoassimilation of propionate in Euglena gracilis Z. Arch Biochem Biophys 249:530–537

    Article  Google Scholar 

  • Yokota A, Haga S, Kitaoka S (1985) Purification and some properties of glyoxylate resuctase (NADP+) and its functional location in mitochondria in Euglena gracilis z. Biochem J 227:211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zempleni J, Teixeira DC, Kuroishi T, Cordonier EL, Baier S (2012) Biotin requirements for DNA damage prevention. Mutat Res 733:58–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Watanabe, F., Yoshimura, K., Shigeoka, S. (2017). Biochemistry and Physiology of Vitamins in Euglena . In: Schwartzbach, S., Shigeoka, S. (eds) Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-319-54910-1_5

Download citation

Publish with us

Policies and ethics