Skip to main content

Sequential Gauss-Newton MCMC Algorithm for High-Dimensional Bayesian Model Updating

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3

Abstract

Bayesian model updating provides a rigorous framework to account for uncertainty induced by lack of knowledge about engineering systems in their respective mathematical models through updates of the joint probability density function (PDF), the so-called posterior PDF, of the unknown model parameters. The Markov chain Monte Carlo (MCMC) methods are currently the most popular approaches for generating samples from the posterior PDF. However, these methods often found wanting when sampling from difficult distributions (e.g., high-dimensional PDFs, PDFs with flat manifolds, multimodal PDFs, and very peaked PDFs). This paper introduces a new multi-level sampling approach for Bayesian model updating, called Sequential Gauss-Newton algorithm, which is inspired by the Transitional Markov chain Monte Carlo (TMCMC) algorithm. The Sequential Gauss-Newton algorithm improves two aspects of TMCMC to make an efficient and effective MCMC algorithm for drawing samples from difficult posterior PDFs. First, the statistical efficiency of the algorithm is enhanced by use of the systematic resampling scheme. Second, a new MCMC algorithm, called Gauss-Newton MCMC algorithm, is proposed which is essentially an M-H algorithm with a Gaussian proposal PDF tailored to the posterior PDF using the gradient and Hessian information of the negative log posterior. The effectiveness of the proposed algorithm for solving the Bayesian model updating problem is illustrated using three examples with irregularly shaped posterior PDFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, J.L.: Bayesian system identification based on probability logic. Struct. Control Health Monit. 17(7), 825–847 (2010)

    Article  Google Scholar 

  2. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vakilzadeh, M.K., Rahrovani, S., Abrahamsson, T.: Modal reduction based on accurate input-output relation preservation. In: Topics in Modal Analysis, Springer, New York, 7, pp. 333–342 (2014)

    Google Scholar 

  4. Yaghoubi, V., Vakilzadeh, M.K., Abrahamsson, T.: A parallel solution method for structural dynamic response analysis. In: Dynamics of Coupled Structures, Springer International Publishing, New York, 4, pp. 149–161 (2015)

    Google Scholar 

  5. Madarshahian, R., Caicedo, J.M.: Reducing MCMC computational cost with a two layered Bayesian approach. In: Model Validation and Uncertainty Quantification, Springer International Publishing, New York, 3, pp. 291–297 (2015)

    Google Scholar 

  6. Chiachio, M., Beck, J.L., Chiachio, J., Rus, G.: Approximate Bayesian computation by subset simulation. SIAM J. Sci. Comput. 36(3), A1339–A1358 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Vakilzadeh, M.K., Huang, Y., Beck, J.L., Abrahamsson, T.: Approximate Bayesian computation by subset simulation using hierarchical state-space models. Mech. Syst. Signal Process. 84(part B), 2–20 (2017)

    Google Scholar 

  8. Straub, D., Papaioannou, I.: Bayesian updating with structural reliability methods. J. Eng. Mech. 141(3), 04014134 (2014)

    Article  Google Scholar 

  9. Au, S.-K., DiazDelaO, F.A., Yoshida, I.: Bayesian updating and model class selection with Subset Simulation. arXiv preprint arXiv:1510.06989 (2015)

    Google Scholar 

  10. Green, P.: Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing. Mech. Syst. Signal Process. 52, 133–146 (2015)

    Article  Google Scholar 

  11. Beck, J.L., Au, S.-K.: Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation. J. Eng. Mech. 128(4), 380–391 (2002)

    Article  Google Scholar 

  12. Ching, J., Chen, Y.-C.: Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. J. Eng. Mech. 133(7), 816–832 (2007)

    Article  Google Scholar 

  13. Gilks, W.R., Berzuini, C.: Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. Ser. B Stat. Methodol. 63(1), 127–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Smith, A.F, Gelfand, A.E.: Bayesian statistics without tears: a sampling–resampling perspective. Am. Stat. 46(2), 84–88 (1992)

    MathSciNet  Google Scholar 

  15. Beck, J.L., Zuev K.M.: Asymptotically independent Markov sampling: a new Markov chain Monte Carlo scheme for Bayesian inference. Int. J. Uncertain. Quantif. 3(5), 445–474 (2013)

    Article  MathSciNet  Google Scholar 

  16. Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods Technical report CRG-TR-93-1, Department of Computer Science, University of Toronto, Toronto, CA (1993)

    Google Scholar 

  17. Hol, J.D., Schön, T.B., Gustafsson, F.: On resampling algorithms for particle filters. In: 2006 IEEE Nonlinear Statistical Signal Processing Workshop, pp. 79–82. IEEE, Piscataway, NJ (2006)

    Google Scholar 

  18. Douc, R., Cappé, O.: Comparison of resampling schemes for particle filtering. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005, pp. 64–69. IEEE, Piscataway, NJ (2005)

    Google Scholar 

  19. Gordon, N.J., Salmond, D.J., Smith, A.F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEEE Proceedings F Radar and Signal Processing, vol. 140(2), pp. 107–113 (1993). IET

    Google Scholar 

  20. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  21. Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. In: Handbook of Nonlinear Filtering, vol. 12, pp. 656–704. Oxford University Press, Oxford (2009)

    Google Scholar 

  22. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  23. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer Science and Business Media, New York (2013)

    MATH  Google Scholar 

  25. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(2), 123–214 (2011)

    Article  MathSciNet  Google Scholar 

  26. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science and Business Media, New York (2006)

    MATH  Google Scholar 

  27. Vakilzadeh, M.K., Yaghoubi, V., Johansson, A.T., Abrahamsson, T.: Manifold Metropolis adjusted Langevin algorithm for high-dimensional Bayesian FE. In: 9th International Conference on Structural Dynamics (EURODYN), Porto, 30 Jun–02 Jul 2014, pp. 3029–3036 (2014)

    Google Scholar 

  28. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-dimensional Bayesian inverse problems Part I: the linearized case, with application to global seismic inversion. SIAM J. Sci. Comput. 35(6), A2494–A2523 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martin, J., Wilcox, L.C., Burstedde, C., Ghattas, O.: A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Sci. Comput. 34(3), A1460–A1487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Haario, H., Saksman, E., Tamminen, J.: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat. 14(3), 375–396 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Prof. James L. Beck from California Institute of Technology for his comments and suggestions on the early stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid K. Vakilzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Vakilzadeh, M.K., Sjögren, A., Johansson, A.T., Abrahamsson, T.J.S. (2017). Sequential Gauss-Newton MCMC Algorithm for High-Dimensional Bayesian Model Updating. In: Barthorpe, R., Platz, R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54858-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54858-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54857-9

  • Online ISBN: 978-3-319-54858-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics