Skip to main content

Abstract

Lipases, or triacylglycerol ester hydrolases (E.C. 3.1.1.3), are one of the most important classes of biocatalysts. Their versatility allows them to be used in various applications, such as organic and fine chemical synthesis, and the production of biofuels, food, beverages, and cleaning products. Several industrial processes are carried out under specific conditions that may be too hostile to allow biocatalysis with known mesophilic enzymes, such that new and more stable enzymes are still required to better fulfill the different industrial requirements. Extremophilic organisms—organisms that inhabit harsh environments—have certain adaptations in their enzymatic machinery that enable them to support extreme conditions. These organisms have yielded enzymes with attractive features, such as greater specific activity in lower or higher temperatures, different optimal pH ranges, and a high tolerance to salt concentrations. This chapter provides a review of the evolution of scientific publications on extremophilic lipases (e.g. thermophilic, alkaliphilic, psychrophilic, halophilic, and acidophilic lipases), as well as a review of the structural characteristics of these biocatalysts, some molecular reasons to explain their stability in such diverse and extreme conditions, and a few examples of their industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida RV, Alquéres SMC, Larentis AL, Rössle SC, Cardoso AM, Almeida WI, Bisch PM, Alves TLM, Martins OB (2006) Cloning, expression, partial characterization and structural modeling of a novel esterase from Pyrococcus furiosus. Enzym Microb Technol 39(5):1128–1136

    Article  CAS  Google Scholar 

  • Alquati C, De Gioia L, Santarossa G, Alberghina L, Fantucci P, Lotti M (2002) The cold-active lipase of Pseudomonas fragi. Eur J Biochem 269(13):3321–3328

    Article  CAS  PubMed  Google Scholar 

  • Alquéres SMC, Branco RV, Freire DMG, Alves TLM, Martins OB, Almeida RV (2011) Characterization of the recombinant thermostable lipase (Pf2001) from Pyrococcus furiosus: effects of thioredoxin fusion Tag and triton X-100. Enzym Res 2011:1–7

    Article  Google Scholar 

  • Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, Almeida RV, Freire DM (2014) From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed Res Int 2014:1–11

    Article  Google Scholar 

  • Ávila-Cisneros N, Velasco-Lozano S, Huerta-Ochoa S, Córdova-López J, Gimeno M, Favela-Torres E (2014) Production of thermostable lipase by Thermomyces lanuginosus on solid-state fermentation: selective hydrolysis of sardine oil. Appl Biochem Biotechnol 174(5):1859–1872

    Article  PubMed  Google Scholar 

  • Babavalian H, Amoozegar MA, Pourbabaee AA, Moghaddam MM, Shakeri F (2013) Isolation and identification of moderately halophilic bacteria producing hydrolytic enzymes from the largest hypersaline playa in Iran. Microbiology 82(4):466–474

    Article  CAS  Google Scholar 

  • Boutaiba S, Bhatnagar T, Hacene H, Mitchell DA, Baratti JC (2006) Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 41:21–26

    Article  CAS  Google Scholar 

  • Branco RV, Gutarra ML, Guisan JM, Freire DM, Almeida RV, Palomo JM (2015) Improving the thermostability and optimal temperature of a lipase from the hyperthermophilic Archaeon Pyrococcus furiosus by covalent immobilization. Biomed Res Int 2015:1–8

    Article  Google Scholar 

  • Chen CKM, Lee GC, Ko TP, Guo RT, Huang LM, Liu HJ, Ho YF, Shaw JF, Wang AHJ (2009) Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding. J Mol Biol 390(4):672–685

    Article  CAS  PubMed  Google Scholar 

  • Daiha KG, Angeli R, Oliveira SD, Almeida RV (2015) Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS One 10:e0131624

    Article  PubMed Central  Google Scholar 

  • Eastmond PJ (2004) Cloning and characterization of the acid lipase from castor beans. J Biol Chem 279(44):45540–45545

    Article  CAS  PubMed  Google Scholar 

  • Freedonia Group (2015) World enzymes report

    Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42(4):223–235

    CAS  Google Scholar 

  • Gutiérrez A, José C, Martínez AT (2009) Microbial and enzymatic control of pitch in the pulp and paper industry. Appl Microbiol Biotechnol 82(6):1005–1018

    Article  PubMed  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  PubMed  Google Scholar 

  • Handelsman T, Shoham Y (1994) Production and characterization of an extracellular thermostable lipase from a thermophilic Bacillus sp. J Gen Appl Microbiol 40(5):435–443

    Article  CAS  Google Scholar 

  • Ji X, Chen G, Zhang Q, Lin L, Wei Y (2015) Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J Basic Microbiol 65(9):3969–3975

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26(5):457–470

    Article  CAS  PubMed  Google Scholar 

  • Jurado-Alameda E, Román MG, Vaz DA, Pérez JLL (2012) Fatty soil cleaning with ozone and lipases. Household Pers Care Today 7:49–52

    CAS  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. PNAS 109(40):16213–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43(4):1595–1603

    Google Scholar 

  • Liu Y, Zhang R, Lian Z, Wang S, Wright AT (2014) Yeast cell surface display for lipase whole cell catalyst and its applications. J Mol Catal B Enzym 106:17–25

    Article  CAS  Google Scholar 

  • López-López O, Cerdán ME, Siso MIG (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15(5):445

    Article  PubMed  PubMed Central  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4(2):91–98

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2000) Bock biology of microorganisms, 9th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Mahadevan GD, Neelagund SE (2014) Thermostable lipase from Geobacillus sp. Iso5: bioseparation, characterization and native structural studies. J Basic Microbiol 54(5):386–396

    Article  CAS  PubMed  Google Scholar 

  • Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38(5):715–721

    Article  CAS  Google Scholar 

  • Manoel EA, Pais KC, Cunha AG, Simas AB, Coelho MAZ, Freire DM (2012) Kinetic resolution of 1, 3, 6-tri-O-benzyl-myo-inositol by Novozym 435: optimization and enzyme reuse. Org Process Res Dev 16(8):1378–1384

    Article  CAS  Google Scholar 

  • Müller-Santos M, de Souza EM, Pedrosa FDO, Mitchell DA, Longhi S, Carrière F, Canaan S, Krieger N (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta Mol Cell Biol Lipids 1791(8):719–729

    Article  Google Scholar 

  • Nardini M, Dijkstra BW (1999) α/β hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9(6):732–737

    Article  CAS  PubMed  Google Scholar 

  • Niyonzima FN, More SS (2015) Microbial detergent compatible lipases. J Sci Ind Res 74:105–113

    CAS  Google Scholar 

  • Ohara K, Unno H, Oshima Y, Hosoya M, Fujino N, Hirooka K, Takahashi S, Yamashita S, Kusunoki M, Nakayama T (2014) Structural insights into the low pH adaptation of a unique carboxylesterase from Ferroplasma altering the pH optima of two carboxylesterases. J Biol Chem 289(35):24499–24510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick AD, Lake BD (1969) Deficiency of an acid lipase in wolman’s disease. Nature 222:1067–1068. doi:10.1038/2221067a0

  • Pérez D, Martín S, Fernández-Lorente G, Fillice M, Guisán JC, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez D, Kovačić F, Wilhelm S, Jaeger KE, García MT, Ventosa A, Mellado E (2012) Identification of amino acids involved in the hydrolytic activity of lipase LipBL from Marinobacter lipolyticus. Microbiology 158(8):2192–2203

    Article  PubMed  Google Scholar 

  • Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98(3):1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Sheridan C (2016) FDA approves farmaceutical drug from transgenic chickens. Nat Biotechnol 34(2):117–119

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Tyndall JD, Sinchaikul S, Fothergill-Gilmore LA, Taylor P, Walkinshaw MD (2002) Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. J Mol Biol 323(5):859–869

    Article  CAS  PubMed  Google Scholar 

  • Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2(4):293–308

    Article  CAS  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Gao B, Zhang L, Lin J, Wang X, Wei D (2010) Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols. Biochim Biophys Acta 1804:2183–2190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Volcan Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Moura, M.V.H. et al. (2017). Extremophilic Lipases. In: Sani, R., Krishnaraj, R. (eds) Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-54684-1_13

Download citation

Publish with us

Policies and ethics