Skip to main content

Abstract

Extremophiles, organisms that have evolved to exist in a variety of extreme environments, fall into a number of different groups, including thermophiles and hyperthermophiles, halophiles, psychrophiles or piezophiles. Extremophilic microorganisms have the potential to produce valuable enzymes able to function under conditions in which usually the enzymes from non-extremophilic members could not. Many novel enzymes have been isolated from these microorganisms to date; amongst all of them, hydrolases, and particularly esterases, are experiencing a growing demand. These lipolytic enzymes, having applications in food, dairy, detergent, biofuel and pharmaceutical industries, are promising catalysts that may lead towards more efficient and environmentally friendly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108. doi:10.1016/S0167-7799(00)01539-0

    Article  CAS  PubMed  Google Scholar 

  • Al Khudary R, Venkatachalam R, Katzer M et al (2010) A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 14:273–285. doi:10.1007/s00792-010-0306-7

    Article  CAS  PubMed  Google Scholar 

  • Arpigny JL, Jaeger K-E (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183. doi:10.1042/0264-6021:3430177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atomi H, Imanaka T (2004) Thermostable carboxylesterases from hyperthermophiles. Tetrahedron: Asymmetr 15:2729–2735. doi:10.1016/j.tetasy.2004.07.054

    Article  CAS  Google Scholar 

  • Aurilia V, Parracino A, D’Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410:234–240

    Article  CAS  PubMed  Google Scholar 

  • Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588. doi:10.1016/j.biotechadv.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  • Blumer-Schuette SE, Brown SD, Sander KB et al (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448. doi:10.1111/1574-6976.12044

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  PubMed  Google Scholar 

  • Bornscheuer U, Buchholz K, Seibel J (2014) Enzymatic degradation of (ligno)cellulose. Angew Chemie—Int Ed 53:10876–10893. doi:10.1002/anie.201309953

    Article  CAS  Google Scholar 

  • Brault G, Shareck F, Hurtubise Y et al (2012) Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3(2). PLoS One 7:e32041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun J, Rhee J, Kim ND et al (2007) Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct Biol 11:1–11. doi:10.1186/1472-6807-7-47

    Google Scholar 

  • Camacho R, Mateos J, González-Reynoso O et al (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36:901–909

    Google Scholar 

  • Cantarel BI, Coutinho PM, Rancurel C et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. doi:10.1093/nar/gkn663

    PubMed  Google Scholar 

  • Capece MC, Clark E, Saleh JK et al (2013) Polyextremophiles and the constraints for terrestrial habitability BT—polyextremophiles. In: Polyextremophiles. Springer Netherlands, Dordrecht, pp 3–59

    Chapter  Google Scholar 

  • Cheng X, Wang X, Qiu T et al (2014) Molecular cloning and characterization of a novel cold-adapted family VIII esterase from a biogas slurry metagenomic library. J Microbiol Biotechnol 24:1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Cowan D a, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 49:326–346. doi:10.1016/j.enzmictec.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC et al (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119. doi:10.1016/j.cbpa.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  • Cuervo-Soto LI, Valdés-García G, Batista-García R et al (2015) Identification of a novel carbohydrate esterase from Bjerkandera adusta: Structural and function predictions through bioinformatics analysis and molecular modeling. Proteins Struct Funct Bioinf 83:533–546. doi:10.1002/prot.24760

    Article  CAS  Google Scholar 

  • Dalmaso G, Ferreira D, Vermelho A (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965. doi:10.3390/md13041925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirjian DC, Morís-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151

    Article  CAS  PubMed  Google Scholar 

  • Eisenmenger MJ, Reyes-De-Corcuera JI (2009) High pressure enhancement of enzymes: a review. Enzyme Microb Technol 45:331–347. doi:10.1016/j.enzmictec.2009.08.001

    Article  CAS  Google Scholar 

  • Faulds CB (2010) What can feruloyl esterases do for us? Phytochem Rev 9:121–132. doi:10.1007/s11101-009-9156-2

    Article  CAS  Google Scholar 

  • Fazary AE, Ju YH (2007) Feruloyl esterases as biotechnological tools: Current and future perspectives. Acta Biochim Biophys Sin (Shanghai) 39:811–828. doi:10.1111/j.1745-7270.2007.00348.x

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente R, Cowan DA, Wood ANP (1995) Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzyme Microb Technol 17:366–372. doi:10.1016/0141-0229(94)00089-1

    Article  Google Scholar 

  • Fuciños P, Pastrana L, Sanromán a et al (2011) An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: Purification, characterisation and structural modelling. J Mol Catal B: Enzym 70:127–137. doi:10.1016/j.molcatb.2011.02.017

    Article  Google Scholar 

  • Fuciños P, González R, Atanes E et al (2012) Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol Biol 861:239–266. doi:10.1007/978-1-61779-600-5_15

    Article  PubMed  Google Scholar 

  • Gao R, Feng Y, Ishikawa K, Ishida H (2003) Cloning, purification and properties of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1. J Mol Catal 25:1–8. doi:10.1016/S1381-1177(03)00064-X

    Google Scholar 

  • Gerday C, Aittaleb M, Arpigny J et al (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta—Protein Struct Mol Enzymol 1342:119–131

    Article  CAS  Google Scholar 

  • Ghanem EH, Al-Sayed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microbiol Biotechnol 16:459–464

    Article  CAS  Google Scholar 

  • Ghati A, Paul G (2015) Purification and characterization of a thermo-halophilic, alkali-stable and extremely benzene tolerant esterase from a thermo-halo tolerant Bacillus cereus strain AGP-03, isolated from “Bakreshwar” hot spring, India. Process Biochem 50:771–781. doi:10.1016/j.procbio.2015.01.026

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. doi:10.1128/MMBR.68.4.669-685.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hei DJ, Clark DS (1994) Pressure stabilization of proteins from extreme thermophiles. Appl Environ Microbiol 60:932–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364. doi:10.1007/s00792-008-0139-9

    Article  CAS  PubMed  Google Scholar 

  • Hotta Y, Ezaki S, Atomi H, Imanaka T (2002) Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl Environ Microbiol 68:3925–3931. doi:10.1128/AEM.68.8.3925-3931.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng. doi:10.1002/(SICI)1097-0290(19980305)57:5<624::AID-BIT15>3.0.CO;2-B

    PubMed  Google Scholar 

  • Joseph B, Ramteke P, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee SB (2004) Thermostable esterase from a thermoacidophilic archaeon: purification and characterization for enzymatic resolution of a chiral compound. Biosci Biotechnol Biochem 68:2289–2298. doi:10.1271/bbb.68.2289

    Article  CAS  PubMed  Google Scholar 

  • Kim YO, Heo YL, Nam BH et al (2013) Molecular cloning, purification, and characterization of a cold-adapted esterase from Photobacterium sp. MA1-3. Fish Aquat Sci 16:311–318

    CAS  Google Scholar 

  • Koseki T, Fushinobu S, Ardiansyah, et al (2009) Occurrence, properties, and applications of feruloyl esterases. Appl Microbiol Biotechnol 84:803–810. doi: 10.1007/s00253-009-2148-8

  • Kulakova L, Galkin A, Nakayama T et al (2004) Cold-active esterase from Psychrobacter sp. Ant300: Gene cloning, characterization, and the effects of Gly→Pro substitution near the active site on its catalytic activity and stability. Biochim Biophys Acta—Proteins Proteomics 1696:59–65. doi:10.1016/j.bbapap.2003.09.008

    Article  CAS  Google Scholar 

  • Lagarde D, Nguyen HK, Ravot G et al (2002) High-throughput screening of thermostable esterases for industrial bioconversions. Org Process Res Dev 6:441–445

    Article  CAS  Google Scholar 

  • Levisson M, van der Oost J, Kengen SW (2009a) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levisson M, Sun L, Hendriks S et al (2009b) Crystal structure and biochemical properties of a novel thermostable esterase containing an immunoglobulin-like domain. J Mol Biol 385:949–962. doi:10.1016/j.jmb.2008.10.075

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. doi:10.1093/nar/gkt1178

    PubMed Central  Google Scholar 

  • López-López O, Cerdán ME, Gonzalez-Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci:445–455. doi:10.2174/1389203715666140228153801

  • Lv XY, Guo LZ, Song L et al (2010) Purification and characterization of a novel extracellular carboxylesterase from the moderately halophilic bacterium Thalassobacillus sp. strain DF-E4. Ann Microbiol 61:281–290. doi:10.1007/s13213-010-0135-z

    Article  Google Scholar 

  • Maiangwa J, Ali MSM, Salleh AB et al (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19:235–247. doi:10.1007/s00792-014-0710-5

    Article  CAS  PubMed  Google Scholar 

  • Manco G, Giosue E, Auria SD et al (2000) Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch Biochem Biophys 373:182–192

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Martínez M, Alcaide M, Tchigvintsev A et al (2013) Biochemical diversity of carboxyl esterases and lipases from lake Arreo (Spain): a metagenomic approach. Appl Environ Microbiol 79:3553–3562. doi:10.1128/AEM.00240-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller-Santos M, de Souza EM, Pedrosa F de O et al (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta—Mol Cell Biol Lipids 1791:719–729. doi:10.1016/j.bbalip.2009.03.006

  • Ollis DL, Cheah E, Cygler M et al (1992) The α/β hydrolase fold. Protein Eng 5:197–211

    Article  CAS  PubMed  Google Scholar 

  • Pakchung A, Simpson P, Codd R (2006) Life on earth. Extremophiles continue to move the goal posts. Environ Chem 3:77–93

    Article  CAS  Google Scholar 

  • Park Y, Choi SY, Lee H et al (2006) A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression. Biochim Biophys Acta 1760:820–828. doi:10.1016/j.bbagen.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  • Pérez D, Martín S, Fernández-Lorente G et al (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:1–11. doi:10.1371/journal.pone.0023325

    Google Scholar 

  • Pérez D, Kovačić F, Wilhelm S et al (2012) Identification of amino acids involved in the hydrolytic activity of lipase LipBL from Marinobacter lipolyticus. Microbiol (United Kingdom) 158:2192–2203. doi:10.1099/mic.0.058792-0

    Google Scholar 

  • Rao L, Zhao X, Pan F et al (2009) Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS One 4:e6980

    Google Scholar 

  • Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71:817–825. doi:10.1128/AEM.71.2.817-825.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh C, Villatte F (2008) Isolation of a low-temperature adapted lipolytic enzyme from uncultivated micro-organism. Proc Soc Agric Bacteriol 105:116–123. doi:10.1111/j.1365-2672.2007.03717.x

    Article  CAS  Google Scholar 

  • Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98:1011–1021. doi:10.1007/s00253-013-5417-5

    Article  CAS  PubMed  Google Scholar 

  • Shang YS, Zhang XE, Wang X De, et al (2010) Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2. Biotechnol Lett 32:1151–1157. doi: 10.1007/s10529-010-0274-0

  • Sharma PK, Singh K, Singh R et al (2012) Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Mol Biol Rep 39:2795–2804. doi:10.1007/s11033-011-1038-1

    Article  CAS  PubMed  Google Scholar 

  • Tirawongsaroj P, Sriprang R, Harnpicharnchai P et al (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49. doi:10.1016/j.jbiotec.2007.08.046

    Article  CAS  PubMed  Google Scholar 

  • Tutino M, Parrilli E, De Santi C et al (2010) Cold-adapted esterases and lipases: a biodiversity still under-exploited. Curr Chem Biol 4:74–83

    CAS  Google Scholar 

  • Udatha DB, Kouskoumvekaki I, Olsson L, Panagiotou G (2011) The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnol Adv 29:94–110. doi: 10.1016/j.biotechadv.2010.09.003

  • Van Den Brink J, De Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492. doi:10.1007/s00253-011-3473-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Jiang X, Ye L et al (2013) Cloning, expression and characterization of a new enantioselective esterase from a marine bacterium Pelagibacterium halotolerans B2T. J Mol Catal B: Enzym 97:270–277. doi:10.1016/j.molcatb.2013.09.002

    Article  CAS  Google Scholar 

  • Wong DWS (2006) Feruloyl esterase: a key enzyme in biomass degradation. Appl Biochem Biotechnol 133:87–112. doi:10.1385/ABAB:133:2:87

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu G, Zhan T et al (2013) Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles 17:809–819

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Lin X, Chen X, Zhang S (2014) Purification and characterization of an esterase from Halobacillus trueperi whb27. J Pure Appl Microbiol 8:1–9

    CAS  Google Scholar 

  • Yano JK, Poulos TL (2003) New understandings of thermostable and peizostable enzymes. Curr Opin Biotechnol 14:360–365. doi:10.1016/S0958-1669(03)00075-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wu G, Liu Z et al (2014) Characterization of EstB, a novel cold-active and organic solvent-tolerant esterase from marine microorganism Alcanivorax dieselolei B-5(T). Extremophiles 18:251–259

    Article  CAS  PubMed  Google Scholar 

  • Zimmer C, Platz T, Cadez N et al (2006) A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 73:132–140. doi:10.1007/s00253-006-0463-x

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Rúa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

González-González, R., Fuciños, P., Rúa, M.L. (2017). An Overview on Extremophilic Esterases. In: Sani, R., Krishnaraj, R. (eds) Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-54684-1_10

Download citation

Publish with us

Policies and ethics