Skip to main content

Arenaviruses and Hemorrhagic Fevers: From Virus Discovery to Molecular Biology, Therapeutics, and Prevention in Latin America

  • Chapter
  • First Online:
Human Virology in Latin America

Abstract

Arenaviruses are enveloped viruses that have a bi-segmented negative-stranded RNA genome. The genomic RNA segments, large (L) and small (S), use an ambisense coding strategy to encode two open reading frames in opposite orientation, separated by a noncoding intergenic region. Several arenaviruses are etiological agents of emerging diseases. At present, they are responsible for up to 500,000 zoonotic infections per year in endemic areas of Africa and South America and can lead to severe and lethal hemorrhagic fever as well as neurological symptoms. Arenaviridae represents the largest group of hemorrhagic fever (HF)-causing viruses: five of the South American arenaviruses (CHPV, GTOV, JUNV, MACV, and SABV) are associated with HF in humans.

The only locally licensed vaccine available is based on a live attenuated virus to prevent Argentine hemorrhagic fever (AHF). Immune therapy has been implemented to reduce AHF mortality rate significantly, and studies on small synthetic and natural chemicals have met variable success as antiviral agents. Rapid diagnosis and early treatment are essential to this end. In this chapter we review studies on virus discovery, molecular and cell biology of infection, pathogenesis, diagnosis, prevention, and treatment totally or partially conducted by Latin American scientists and medical personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acuna-Soto R, Romero LC et al (2000) Large epidemics of hemorrhagic fevers in Mexico 1545–1815. Am J Trop Med Hyg 62(6):733–739

    Article  CAS  PubMed  Google Scholar 

  2. Albarino CG, Bergeron E et al (2009) Efficient reverse genetics generation of infectious Junin viruses differing in glycoprotein processing. J Virol 83(11):5606–5614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albarino CG, Bird BH et al (2011) The major determinant of attenuation in mice of the Candid1 vaccine for argentine hemorrhagic fever is located in the G2 glycoprotein transmembrane domain. J Virol 85(19):10404–10408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Albarino CG, Bird BH et al (2011) Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains. J Virol 85(1):112–122

    Article  CAS  PubMed  Google Scholar 

  5. Albarino CG, Ghiringhelli PD et al (1997) Molecular characterization of attenuated Junin virus strains. J Gen Virol 78(Pt 7):1605–1610

    Article  CAS  PubMed  Google Scholar 

  6. Ambrosio A, Saavedra M et al (2011) Argentine hemorrhagic fever vaccines. Hum Vaccin 7(6):694–700

    Article  CAS  PubMed  Google Scholar 

  7. Ambrosio AM, Enria DA et al (1986) Junin virus isolation from lympho-mononuclear cells of patients with Argentine hemorrhagic fever. Intervirology 25(2):97–102

    Article  CAS  PubMed  Google Scholar 

  8. Artuso MC, Ellenberg PC et al (2009) Inhibition of Junin virus replication by small interfering RNAs. Antivir Res 84(1):31–37

    Article  CAS  PubMed  Google Scholar 

  9. Auperin DD, Romanowski V et al (1984) Sequencing studies of pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52(3):897–904

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bao Y, Chetvernin V et al (2014) Improvements to pairwise sequence comparison (PASC): a genome-based web tool for virus classification. Arch Virol 159(12):3293–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bisordi I, Levis S et al (2015) Pinhal virus, a new arenavirus isolated from Calomys tener in Brazil. Vector Borne Zoonotic Dis 15(11):694–700

    Article  PubMed  Google Scholar 

  12. Borio CS, Bilen MF et al (2012) Antigen vehiculization particles based on the Z protein of Junin virus. BMC Biotechnol 12(1):1–9

    Article  Google Scholar 

  13. Briggiler AM, Enria DA et al (1987) Contagio interhumano e infección clfnica con virus Junin (V J) en matrimonios residentes en el area endémica de Fiebre Hemorráigica Argentina (FHA). Medicina (B Aires) 47:565

    Google Scholar 

  14. Cajimat MN, Milazzo ML et al (2012) Ocozocoautla de espinosa virus and hemorrhagic fever, Mexico. Emerg Infect Dis 18(3):401–405

    Article  PubMed  PubMed Central  Google Scholar 

  15. Casabona JC, Levingston Macleod JM et al (2009) The RING domain and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation of glycoproteins into infectious chimeric arenavirus-like particles. J Virol 83(14):7029–7039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castilla V, Contigiani M et al (2005) Inhibition of cell fusion in Junin virus-infected cells by sera from argentine hemorrhagic fever patients. J Clin Virol 32(4):286–288

    Article  CAS  PubMed  Google Scholar 

  17. Coimbra TLM, Nassar ES et al (1994) New arenavirus isolated in Brazil. Lancet 343(8894):391–392

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cordo SM, Valko A et al (2013) Membrane localization of Junin virus glycoproteins requires cholesterol and cholesterol rich membranes. Biochem Biophys Res Commun 430(3):912–917

    Article  CAS  PubMed  Google Scholar 

  19. Crispin M, Zeltina A et al (2016) Native functionality and therapeutic targeting of arenaviral glycoproteins. Curr Opin Virol 18:70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delgado S, Erickson BR et al (2008) Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog 4(4):e1000047

    Article  PubMed  PubMed Central  Google Scholar 

  21. Enria D, Briggiler AM et al (1998) An overview of the epidemiological, ecological and preventive hallmarks of Argentine hemorrhagic fever (Junin virus). Bull Inst Pasteur 96:12

    Article  Google Scholar 

  22. Enria DA, Ambrosio AM et al (2010) Candid#1 vaccine against Argentine hemorrhagic fever produced in Argentina. Immunogenicity and safety. Medicina 70(3):215–222

    PubMed  Google Scholar 

  23. Enria DA, Barrera Oro JG (2002) Junin virus vaccines. Curr Top Microbiol Immunol 263:239–261

    CAS  PubMed  Google Scholar 

  24. Enria DA, Briggiler AM et al (2008) Treatment of argentine hemorrhagic fever. Antivir Res 78(1):132–139

    Article  CAS  PubMed  Google Scholar 

  25. Forlenza MB, Roldán JS et al (2011) Interacción del virus Junín con lectinas de tipo C y mecanismos endocíticos involucrados. In: X Congreso Argentino de Virología, pp 162–163

    Google Scholar 

  26. Garcia CC, Djavani M et al (2006) Arenavirus Z protein as an antiviral target: virus inactivation and protein oligomerization by zinc finger-reactive compounds. J Gen Virol 87(pt 5):1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. García CC, Sepúlveda CS et al (2011) Novel therapeutic targets for arenavirus hemorrhagic fevers. Future Virol 6(1):27–44

    Article  Google Scholar 

  28. Garcia CC, Topisirovic I et al (2010) An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein. Biochem Biophys Res Commun 393(4):625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghiringhelli PD, Rivera-Pomar RV et al (1991) Molecular organization of Junin virus S RNA: complete nucleotide sequence, relationship with other members of the Arenaviridae and unusual secondary structures. J Gen Virol 72(9):2129–2141

    Article  CAS  PubMed  Google Scholar 

  30. Gomez RM, Pozner RG et al (2003) Endothelial cell function alteration after Junin virus infection. Thromb Haemost 90(2):326–333

    Article  CAS  PubMed  Google Scholar 

  31. Goni SE, Iserte JA et al (2006) Genomic features of attenuated Junin virus vaccine strain candidate. Virus Genes 32(1):37–41

    Article  CAS  PubMed  Google Scholar 

  32. Goni SE, Iserte JA et al (2010) Molecular analysis of the virulence attenuation process in Junin virus vaccine genealogy. Virus Genes 40(3):320–328

    Article  CAS  PubMed  Google Scholar 

  33. Goni SE, Stephan BI et al (2011) Viral diversity of Junin virus field strains. Virus Res 160(1–2):150–158

    Article  CAS  PubMed  Google Scholar 

  34. Harrison LH, Halsey NA et al (1999) Clinical case definitions for argentine hemorrhagic fever. Clin Infect Dis 28(5):1091–1094

    Article  CAS  PubMed  Google Scholar 

  35. Helguera G, Jemielity S et al (2012) An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all new world hemorrhagic fever arenaviruses. J Virol 86(7):4024–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iapalucci S, Lopez N et al (1991) The 3′ end termini of the Tacaribe arenavirus subgenomic RNAs. Virology 182(1):269–278

    Article  CAS  PubMed  Google Scholar 

  37. Iserte JA, Stephan BI et al (2013) Family-specific degenerate primer design: a tool to design consensus degenerated oligonucleotides. Biotechnol Res Int 2013:383646

    Article  PubMed  PubMed Central  Google Scholar 

  38. Iula LJ, Martínez MG et al (2011) La expresión del receptor celular DC-SIGN aumenta la capacidad infectiva del virus Junín. Interacción directa del receptor con la glicoproteína viral. In: X Congreso Argentino de Virología, p 42

    Google Scholar 

  39. Jacamo R, Lopez N et al (2003) Tacaribe virus Z protein interacts with the L polymerase protein to inhibit viral RNA synthesis. J Virol 77(19):10383–10393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kerber R, Reindl S et al (2015) Research efforts to control highly pathogenic arenaviruses: a summary of the progress and gaps. J Clin Virol 64:120–127

    Article  CAS  PubMed  Google Scholar 

  41. Levis SC, Saavedra MC et al (1985) Correlation between endogenous interferon and the clinical evolution of patients with argentine hemorrhagic fever. J Interferon Res 5(3):383–389

    Article  CAS  PubMed  Google Scholar 

  42. Linero FN, Scolaro LA (2009) Participation of the phosphatidylinositol 3-kinase/Akt pathway in Junin virus replication in vitro. Virus Res 145(1):166–170

    Article  CAS  PubMed  Google Scholar 

  43. Linero FN, Sepulveda CS et al (2012) Host cell factors as antiviral targets in arenavirus infection. Viruses 4(9):1569–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lopez N, Jacamo R et al (2001) Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 75(24):12241–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loureiro ME, D’Antuono A et al (2012) Uncovering viral protein-protein interactions and their role in arenavirus life cycle. Viruses 4(9):1651–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loureiro ME, Wilda M et al (2011) Molecular determinants of arenavirus Z protein homo-oligomerization and L polymerase binding. J Virol 85(23):12304–12314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lozano ME, Enria D et al (1995) Rapid diagnosis of argentine hemorrhagic fever by reverse transcriptase PCR-based assay. J Clin Microbiol 33(5):1327–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lozano ME, Posik DM et al (1997) Characterization of arenaviruses using a family-specific primer set for RT-PCR amplification and RFLP analysis. Its potential use for detection of uncharacterized arenaviruses. Virus Res 49(1):79–89

    Article  CAS  PubMed  Google Scholar 

  49. Machado AM, Figueiredo GG et al (2010) Standardization of an ELISA test using a recombinant nucleoprotein from the Junin virus as the antigen and serological screening for arenavirus among the population of Nova Xavantina, state of Mato Grosso. Rev Soc Bras Med Trop 43(3):229–233

    Article  PubMed  Google Scholar 

  50. Mahmutovic S, Clark L et al (2015) Molecular basis for antibody-mediated neutralization of New World hemorrhagic fever mammarenaviruses. Cell Host Microbe 18(6):705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maiztegui JI, McKee KT Jr et al (1998) Protective efficacy of a live attenuated vaccine against argentine hemorrhagic fever. AHF study group. J Infect Dis 177(2):277–283

    Article  CAS  PubMed  Google Scholar 

  52. Marr JS, Kiracofe JB (2000) Was the huey cocoliztli a haemorrhagic fever? Med Hist 44(3):341–362

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Marta RF, Montero VS et al (1999) Proinflammatory cytokines and elastase-alpha-1-antitrypsin in Argentine hemorrhagic fever. Am J Trop Med Hyg 60(1):85–89

    Article  CAS  PubMed  Google Scholar 

  54. Marta RF, Montero VS et al (1998) Systemic disorders in argentine haemorrhagic fever. Bull Inst Pasteur 96:115–124

    Article  Google Scholar 

  55. Martinez MG, Cordo SM et al (2007) Characterization of Junín arenavirus cell entry. J Gen Virol 88(6):1776–1784

    Article  CAS  PubMed  Google Scholar 

  56. Martinez MG, Cordo SM et al (2008) Involvement of cytoskeleton in Junin virus entry. Virus Res 138(1–2):17–25

    Article  CAS  PubMed  Google Scholar 

  57. Martinez MG, Forlenza MB et al (2009) Involvement of cellular proteins in Junin arenavirus entry. Biotechnol J 4(6):866–870

    Article  CAS  PubMed  Google Scholar 

  58. Milazzo ML, Barragan-Gomez A et al (2010) Antibodies to Tacaribe serocomplex viruses (family Arenaviridae, genus Arenavirus) in cricetid rodents from New Mexico, Texas, and Mexico. Vector Borne Zoonotic Dis 10(6):629–637

    Article  PubMed  PubMed Central  Google Scholar 

  59. Milazzo ML, Cajimat MN et al (2015) Epizootiology of Tacaribe serocomplex viruses (Arenaviridae) associated with neotomine rodents (Cricetidae, Neotominae) in southern California. Vector Borne Zoonotic Dis 15(2):156–166

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mills JN, Ellis BA et al (1994) Prevalence of infection with Junin virus in rodent populations in the epidemic area of Argentine hemorrhagic fever. Am J Trop Med Hyg 51(5):554–562

    Article  CAS  PubMed  Google Scholar 

  61. Molinas FC, de Bracco MM et al (1981) Coagulation studies in Argentine hemorrhagic fever. J Infect Dis 143(1):1–6

    Article  CAS  PubMed  Google Scholar 

  62. Morales MA, Calderon GE et al (2002) Evaluation of an enzyme-linked immunosorbent assay for detection of antibodies to Junin virus in rodents. J Virol Methods 103(1):57–66

    Article  CAS  PubMed  Google Scholar 

  63. Nakauchi M, Fukushi S et al (2009) Characterization of monoclonal antibodies to Junin virus nucleocapsid protein and application to the diagnosis of hemorrhagic fever caused by South American arenaviruses. Clin Vaccine Immunol CVI 16(8):1132–1138

    Article  CAS  PubMed  Google Scholar 

  64. Negrotto S, Mena HA et al (2015) Human plasmacytoid dendritic cells elicited different responses after infection with pathogenic and nonpathogenic Junin virus strains. J Virol 89(14):7409–7413

    Article  PubMed  PubMed Central  Google Scholar 

  65. Parisi G, Echave J et al (1996) Computational characterisation of potential RNA-binding sites in arenavirus nucleocapsid proteins. Virus Genes 13(3):247–254

    Article  CAS  PubMed  Google Scholar 

  66. Parodi AS, Greenway DJ et al (1958) Sobre la etiología del brote epidémico de Junín. Dia Med 30:2300–2301

    CAS  PubMed  Google Scholar 

  67. Parodi AS, Rugiero HR et al (1959) Isolation of the Junin virus (epidemic hemorrhagic fever) from the mites of the epidemic area (Echinolaelaps echidninus Barlese). Prensa Med Argent 46:2242–2244

    CAS  PubMed  Google Scholar 

  68. Peña Cárcamo JR (2016) Viperina, un factor de restricción en la infección con el arenavirus Junín. PhD thesis, Universidad de Buenos Aires, Argentina

    Google Scholar 

  69. Pozner RG, Ure AE et al (2010) Junin virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling. PLoS Pathog 6(4):e1000847

    Article  PubMed  PubMed Central  Google Scholar 

  70. Radoshitzky SR, Abraham J et al (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature (Lond) 446(7131):92–96

    Article  CAS  Google Scholar 

  71. Radoshitzky SR, Bao Y et al (2015) Past, present, and future of arenavirus taxonomy. Arch Virol 160(7):1851–1874

    Article  CAS  PubMed  Google Scholar 

  72. Reignier T, Oldenburg J et al (2006) Receptor use by pathogenic arenaviruses. Virology 353(1):111–120

    Article  CAS  PubMed  Google Scholar 

  73. Roldan JS, Martinez MG et al (2016) Human transferrin receptor triggers an alternative Tacaribe virus internalization pathway. Arch Virol 161(2):353–363

    Article  CAS  PubMed  Google Scholar 

  74. Romanowski V, Bishop DH (1983) The formation of arenaviruses that are genetically diploid. Virology 126(1):87–95

    Article  CAS  PubMed  Google Scholar 

  75. Romanowski V, Pidre ML et al (2013) Argentine hemorrhagic fever. In: Singh SK (ed) Viral hemorrhagic fevers. CRC Press, Boca Raton [ http://www.crcpress.com /]/Taylor & Francis Group, pp 317–337

  76. Sabattini MS, Gonzalez de Rios LE et al (1977) Infección natural y experimental de roedores con virus Junin. Medicina (B Aires) 37:149–159

    Google Scholar 

  77. Salvato MS, Clegg JCS et al (2012) Family Arenaviridae. In: Virus taxonomy. Elsevier, San Diego, pp 715–723

    Google Scholar 

  78. Sepulveda CS, Garcia CC et al (2012) Inhibition of Junin virus RNA synthesis by an antiviral acridone derivative. Antiviral Res 93:16–22

    Article  CAS  PubMed  Google Scholar 

  79. Tesh RB, Jahrling PB et al (1994) Description of Guanarito virus (Arenaviridae: arenavirus), the etiologic agent of Venezuelan hemorrhagic fever. Am J Trop Med Hyg 50(4):452–459

    Article  CAS  PubMed  Google Scholar 

  80. Tortorici MA, Albarino CG et al (2001) Arenavirus nucleocapsid protein displays a transcriptional antitermination activity in vivo. Virus Res 73(1):41–55

    Article  CAS  PubMed  Google Scholar 

  81. Tortorici MA, Ghiringhelli PD et al (2001) Zinc-binding properties of Junin virus nucleocapsid protein. J Gen Virol 82(pt 1):121–128

    Article  CAS  PubMed  Google Scholar 

  82. Ure AE, Ghiringhelli PD et al (2008) Argentine hemorrhagic fever diagnostic test based on recombinant Junin virus N protein. J Med Virol 80(12):2127–2133

    Article  CAS  PubMed  Google Scholar 

  83. Vela EM, Colpitts TM et al (2008) Pichinde virus is trafficked through a dynamin 2 endocytic pathway that is dependent on cellular Rab5- and Rab7-mediated endosomes. Arch Virol 153(7):1391–1396

    Article  CAS  PubMed  Google Scholar 

  84. Vezza AC, Gard GP et al (1977) Structural components of the arenavirus Pichinde. J Virol 23(3):776–786

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Vitullo AD, Hodara VL et al (1987) Effect of persistent infection with Junin virus on growth and reproduction of its natural reservoir, Calomys musculinus. Am J Trop Med Hyg 37(3):663–669

    Article  CAS  PubMed  Google Scholar 

  86. York J, Agnihothram SS et al (2005) Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein. Virology 343(2):267–274

    Article  CAS  PubMed  Google Scholar 

  87. York J, Romanowski V et al (2004) The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1–G2 complex. J Virol 78(19):10783–10792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeitlin L, Geisbert JB et al (2016) Monoclonal antibody therapy for Junin virus infection. Proc Natl Acad Sci U S A 113(16):4458–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Romanowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Romanowski, V., Pidre, M.L., Lozano, M.E., Goñi, S.E. (2017). Arenaviruses and Hemorrhagic Fevers: From Virus Discovery to Molecular Biology, Therapeutics, and Prevention in Latin America. In: Ludert, J., Pujol, F., Arbiza, J. (eds) Human Virology in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-54567-7_10

Download citation

Publish with us

Policies and ethics