Skip to main content

Segmentation of Trabecular Bone for In Vivo CT Imaging Using a Novel Approach of Computing Spatial Variation in Bone and Marrow Intensities

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

Abstract

Characterization of trabecular bone (TB) microarchitecture and computational modelling of bone strength are widely used in research and clinical studies related to osteoporosis, which is associated with elevated risk of fractures. Segmentation of TB network from the background marrow space is essential for quantitative assessment of the quality of TB microarchitecture and bone strength, which are key determinants of fracture risk. Clinical CT is rapidly emerging as a viable modality for in vivo TB microarchitectural imaging at peripheral sites. Here, we present a new method for TB segmentation using in vivo CT imaging of distal tibia. Our method is primarily based on computing the spatial variation in the background marrow intensity as well as the bone-marrow contrast. First, a new anisotropic diffusion algorithm is developed and applied to improve local separability of TB microstructures that uses Hessian matrix to locally guide the diffusion process. Subsequently, a new multi-scale morphological algorithm is developed and applied to determine spatial distribution of bone and marrow intensity values. The accuracy of the method was examined by comparing its performance with multi-user-selected regional thresholding for bone-marrow separation on in vivo CT images of ten subjects each containing twenty random regions of interest (ROIs). High sensitivity (0.93), specificity (0.93), and accuracy (0.93) of the new method were observed from experimental results. In addition, the impact of the new method on predicting bone strength was examined in a cadaveric study. Experimental results have shown that the new TB segmentation method significantly improves the ability (\(R^2\) = 0.82) of the computed TB thickness measure to predict actual bone strength determined by mechanical testing on TB cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riggs, B.L., Khosla, S., Melton, L.J.: Better tools for assessing osteoporosis. J. Clin. Invest. 122, 4323–4324 (2012)

    Article  Google Scholar 

  2. Blume, S.W., Curtis, J.: Medical costs of osteoporosis in the elderly medicare population. Osteoporos. Int. 22, 1835–1844 (2011)

    Article  Google Scholar 

  3. Wehrli, F.W., Saha, P.K., Gomberg, B.R., Song, H.K., Snyder, P.J., Benito, M., Wright, A., Weening, R.: Role of magnetic resonance for assessing structure and function of trabecular bone. Top. Magn. Reson. Imaging 13, 335–356 (2002)

    Article  Google Scholar 

  4. Kleerekoper, M., Villanueva, A., Stanciu, J., Rao, D.S., Parfitt, A.: The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif. Tissue Int. 37, 594–597 (1985)

    Article  Google Scholar 

  5. Recker, R.R.: Architecture and vertebral fracture. Calcif. Tissue Int. 53(Suppl. 1), S139–S142 (1993)

    Article  Google Scholar 

  6. Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., Recker, R.R.: Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR histomorphometry nomenclature committee. J. Bone Miner. Res. 2, 595–610 (1987)

    Article  Google Scholar 

  7. Majumdar, S.: Magnetic resonance imaging of trabecular bone structure. Top. Magn. Reson. Imaging 13, 323–334 (2002)

    Article  Google Scholar 

  8. Chang, G., Pakin, S.K., Schweitzer, M.E., Saha, P.K., Regatte, R.R.: Adaptations in trabecular bone microarchitecture in olympic athletes determined by 7T MRI. J. Magn. Reson. Imaging 27, 1089–1095 (2008)

    Article  Google Scholar 

  9. Boutroy, S., Bouxsein, M.L., Munoz, F., Delmas, P.D.: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 90, 6508–6515 (2005)

    Article  Google Scholar 

  10. Burghardt, A.J., Pialat, J.B., Kazakia, G.J., Boutroy, S., Engelke, K., Patsch, J.M., Valentinitsch, A., Liu, D., Szabo, E., Bogado, C.E., Zanchetta, M.B., McKay, H.A., Shane, E., Boyd, S.K., Bouxsein, M.L., Chapurlat, R., Khosla, S., Majumdar, S.: Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography. J. Bone Miner. Res. 28, 524–536 (2013)

    Article  Google Scholar 

  11. Link, T.M., Vieth, V., Stehling, C., Lotter, A., Beer, A., Newitt, D., Majumdar, S.: High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur. Radiol. 13, 663–671 (2003)

    Google Scholar 

  12. Saha, P.K., Xu, Y., Duan, H., Heiner, A., Liang, G.: Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE Trans. Med. Imaging 29, 1821–1838 (2010)

    Article  Google Scholar 

  13. Saha, P.K., Liu, Y., Chen, C., Jin, D., Letuchy, E.M., Xu, Z., Amelon, R.E., Burns, T.L., Torner, J.C., Levy, S.M., et al.: Characterization of trabecular bone plate-rod microarchitecture using multirow detector CT and the tensor scale: algorithms, validation, and applications to pilot human studies. Med. Phys. 42, 5410–5425 (2015)

    Article  Google Scholar 

  14. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34, 1940–1964 (2015)

    Article  Google Scholar 

  15. Saha, P.K.: Tensor scale: a local morphometric parameter with applications to computer vision and image processing. Comput. Vis. Image Underst. 99, 384–413 (2005)

    Article  Google Scholar 

  16. Hildebrand, T., Rüegsegger, P.: Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Bio Med. Eng. 1, 15–23 (1997)

    Article  Google Scholar 

  17. Rajapakse, C.S., Leonard, M.B., Bhagat, Y.A., Sun, W., Magland, J.F., Wehrli, F.W.: Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 262, 912–920 (2012)

    Article  Google Scholar 

  18. MacNeil, J.A., Boyd, S.K.: Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42, 1203–1213 (2008)

    Article  Google Scholar 

  19. Keaveny, T.M., Morgan, E.F., Niebur, G.L., Yeh, O.C.: Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3, 307–333 (2001)

    Article  Google Scholar 

  20. Link, T.M., Majumdar, S.: Osteoporosis imaging. Radiol. Clin. North Am. 41, 813–839 (2003)

    Article  Google Scholar 

  21. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

    Article  Google Scholar 

  22. Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1028–1032 (1994)

    Article  Google Scholar 

  23. Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Comput. Vis. Image Underst. 63, 418–429 (1996)

    Article  Google Scholar 

  24. Saha, P.K., Chaudhuri, B.B., Majumder, D.D.: A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recogn. 30, 1939–1955 (1997)

    Article  Google Scholar 

  25. Saha, P.K., Gomberg, B.R., Wehrli, F.W.: Three-dimensional digital topological characterization of cancellous bone architecture. Int. J. Imaging Syst. Technol. 11, 81–90 (2000)

    Article  Google Scholar 

  26. Stauber, M., Muller, R.: Volumetric spatial decomposition of trabecular bone into rods and plates-a new method for local bone morphometry. Bone 38, 475–484 (2006)

    Article  Google Scholar 

  27. Stauber, M., Rapillard, L., Lenthe, G.H., Zysset, P., Muller, R.: Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J. Bone Miner. Res. 21, 586–595 (2006)

    Article  Google Scholar 

  28. Liu, X.S., Sajda, P., Saha, P.K., Wehrli, F.W., Bevill, G., Keaveny, T.M., Guo, X.E.: Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J. Bone Miner. Res. 23, 223–235 (2008)

    Article  Google Scholar 

  29. Wehrli, F.W., Gomberg, B.R., Saha, P.K., Song, H.K., Hwang, S.N., Snyder, P.J.: Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J. Bone Miner. Res. 16, 1520–1531 (2001)

    Article  Google Scholar 

  30. Otsu, N.: A threshold selection methods from grey-level histograms. IEEE Trans. Pattern Anal. Mach. Intell. 9, 62–66 (1979)

    Google Scholar 

  31. Saha, P.K., Udupa, J.: Optimum threshold selection using class uncertainty and region homogeneity. IEEE Trans. Pattern Anal. Mach. Intell. 23, 689–706 (2001)

    Article  Google Scholar 

  32. Waarsing, J.H., Day, J.S., Weinans, H.: An improved segmentation method for in vivo \(\mu \)CT imaging. J. Bone Miner. Res. 19, 1640–1650 (2004)

    Article  Google Scholar 

  33. Burghardt, A.J., Kazakia, G.J., Majumdar, S.: A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone. Ann. Biomed. Eng. 35, 1678–1686 (2007)

    Article  Google Scholar 

  34. Scherf, H., Tilgner, R.: A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. Am. J. Phys. Anthropol. 140, 39–51 (2009)

    Article  Google Scholar 

  35. Tassani, S., Korfiatis, V., Matsopoulos, G.: Influence of segmentation on micro-CT images of trabecular bone. J. Microsc. 256, 75–81 (2014)

    Article  Google Scholar 

  36. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  37. Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recogn. 46, 1369–1381 (2013)

    Article  Google Scholar 

  38. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  39. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  40. Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, New York (1988)

    Google Scholar 

  41. Saha, P.K., Wehrli, F.W.: Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans. Med. Imaging 23, 53–62 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, C., Jin, D., Zhang, X., Levy, S.M., Saha, P.K. (2017). Segmentation of Trabecular Bone for In Vivo CT Imaging Using a Novel Approach of Computing Spatial Variation in Bone and Marrow Intensities. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics