Skip to main content

The Rising Incidence of Thyroid Cancer: Contributions from Healthcare Practice and Biologic Risk Factors

  • Chapter
  • First Online:
Management of Differentiated Thyroid Cancer

Abstract

The incidence of thyroid cancer has dramatically increased over the past several decades, while mortality from thyroid cancer remains exceedingly low. Mortality has increased slightly in more recent years, by less than 1% per year. The simplest explanation for this pattern is an increase in the radiologic detection and pathologic reporting of identified thyroid nodules with very little change in underlying biology. A number of biologic mechanisms have been proposed but are unlikely to account for the dramatic upward trend in incidence over such a short time. Radiation exposure at a young age is an established cause of thyroid cancer, but this typically requires doses equivalent to nuclear catastrophe or radiation cancer treatment and thus is unlikely to have a significant global impact on thyroid cancer incidence. Similarly a number of behavioral and environmental factors influence TSH levels and other proposed hormonal drivers of thyroid cancer cell proliferation. Of these, an increase in obesity and a decrease in smoking may contribute to a small increase in thyroid cancer, but this will require significantly larger and more rigorous studies to formally establish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Gy:

Gray unit of ionizing radiation

HR:

Hazard ratio

Sv:

Sievert unit of ionizing radiation

TSH:

Thyroid-stimulating hormone

References

  1. Davies L, Morris LGT, Haymart M, Chen AY, Goldenberg D, Morris J, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Disease State Clinical Review: the increasing incidence of thyroid cancer. Endocr Pract. 2015;21(6):686–96.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pace LE, Keating NL. A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA. 2014;311(13):1327–35.

    Article  CAS  PubMed  Google Scholar 

  3. Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. 2010;102(9):605–13.

    Article  PubMed  Google Scholar 

  4. Concato J. Probability, uncertainty, and prostate cancer. Ann Intern Med. 2013;158(3):211–2.

    Article  PubMed  Google Scholar 

  5. Nieto HR, Boelaert K. Women in cancer thematic review: thyroid stimulating hormone in thyroid cancer: does it matter? Endocr Relat Cancer. 2016;23(11):T109–21.

    Article  PubMed  Google Scholar 

  6. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.

    Article  CAS  PubMed  Google Scholar 

  7. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009;115(16):3801–7.

    Article  PubMed  Google Scholar 

  8. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317–22.

    Article  PubMed  Google Scholar 

  9. Mortensen JD, Woolner LB, Bennett WA. Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab. 1955;15(10):​1270–80.

    Article  CAS  PubMed  Google Scholar 

  10. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer. 1985;56(3):531–8.

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Tello FJ, Martinez-Cabruja R, Fernandez-Martin J, Lasso-Oria C, Ballestin-Carcavilla C. Occult carcinoma of the thyroid. A systematic autopsy study from Spain of two series performed with two different methods. Cancer. 1993;71(12):4022–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kent WDT, Hall SF, Isotalo PA, Houlden RL, George RL, Groome PA. Increased incidence of differentiated thyroid carcinoma and detection of subclinical disease. CMAJ. 2007;177(11):1357–61.

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Grady TJ, Gates MA, Boscoe FP. Thyroid cancer incidence attributable to overdiagnosis in the United States 1981-2011. Int J Cancer. 2015;137(11):​2664–73.

    Article  PubMed  CAS  Google Scholar 

  14. Cramer JD, Fu P, Harth KC, Margevicius S, Wilhelm SM. Analysis of the rising incidence of thyroid cancer using the Surveillance, Epidemiology and End Results national cancer data registry. Surgery. 2010;148(6):1147–52. discussion 1152

    Article  PubMed  Google Scholar 

  15. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol Biomark Prev. 2009;18(3):784–91.

    Article  Google Scholar 

  16. Malone MK, Zagzag J, Ogilvie JB, Patel KN, Heller KS. Thyroid cancers detected by imaging are not necessarily small or early stage. Thyroid. 2014;24(2):314–8.

    Article  PubMed  Google Scholar 

  17. Yoo F, Chaikhoutdinov I, Mitzner R, Liao J, Goldenberg D. Characteristics of incidentally discovered thyroid cancer. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1181–6.

    Article  PubMed  Google Scholar 

  18. Furuya-Kanamori L, Bell KJL, Clark J, Glasziou P, Doi SAR. Prevalence of differentiated thyroid cancer in autopsy studies over six decades: a meta-analysis. J Clin Oncol. 2016;34(30):3672–79

    Google Scholar 

  19. Wiest PW, Hartshorne MF, Inskip PD, Crooks LA, Vela BS, Telepak RJ, et al. Thyroid palpation versus high-resolution thyroid ultrasonography in the detection of nodules. J Ultrasound Med. 1998;17(8):487–96.

    Article  CAS  PubMed  Google Scholar 

  20. Clegg LX, Reichman ME, Miller BA, Hankey BF, Singh GK, Lin YD, et al. Impact of socioeconomic status on cancer incidence and stage at diagnosis: selected findings from the surveillance, epidemiology, and end results: National Longitudinal Mortality Study. Cancer Causes Control. 2009;20(4):417–35.

    Article  PubMed  Google Scholar 

  21. Li N, Du XL, Reitzel LR, Xu L, Sturgis EM. Impact of enhanced detection on the increase in thyroid cancer incidence in the United States: review of incidence trends by socioeconomic status within the surveillance, epidemiology, and end results registry, 1980–2008. Thyroid. 2013;23(1):103–10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morris LGT, Sikora AG, Tosteson TD, Davies L. The increasing incidence of thyroid cancer: the influence of access to care. Thyroid. 2013;23(7):885–91.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee T-J, Kim S, Cho H-J, Lee J-H. The incidence of thyroid cancer is affected by the characteristics of a healthcare system. J Korean Med Sci. 2012;27(12):1491–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Banerjee M, Wiebel JL, Guo C, Gay B, Haymart MR. Use of imaging tests after primary treatment of thyroid cancer in the United States: population based retrospective cohort study evaluating death and recurrence. BMJ. 2016;354:i3839.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kweon S-S, Shin M-H, Chung I-J, Kim Y-J, Choi J-S. Thyroid cancer is the most common cancer in women, based on the data from population-based cancer registries. South Korea Jpn J Clin Oncol. 2013;43(10):1039–46.

    Article  PubMed  Google Scholar 

  26. Han MA, Choi KS, Lee H-Y, Kim Y, Jun JK, Park E-C. Current status of thyroid cancer screening in Korea: results from a nationwide interview survey. Asian Pac J Cancer Prev. 2011;12(7):1657–63.

    PubMed  Google Scholar 

  27. Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer “epidemic”--screening and overdiagnosis. N Engl J Med. 2014;371(19):1765–7.

    Article  PubMed  Google Scholar 

  28. Ahn HS, Welch HG. South Korea’s Thyroid-Cancer “Epidemic”--Turning the Tide. N Engl J Med. 2015;373(24):2389–90.

    Article  CAS  PubMed  Google Scholar 

  29. Pakdaman MN, Rochon L, Gologan O, Tamilia M, Garfield N, Hier MP, et al. Incidence and histopathological behavior of papillary microcarcinomas: study of 429 cases. Otolaryngol Head Neck Surg. 2008;139(5):718–22.

    Article  PubMed  Google Scholar 

  30. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tuttle RM, Haddad RI, Ball DW, Byrd D, Dickson P, Duh Q-Y, et al. Thyroid carcinoma, version 2.2014. J Natl Compr Cancer Netw. 2014;12(12):1671–80. quiz 1680

    Article  Google Scholar 

  32. Sun GH, DeMonner S, Davis MM. Epidemiological and economic trends in inpatient and outpatient thyroidectomy in the United States, 1996–2006. Thyroid. 2013;23(6):727–33.

    Article  PubMed  Google Scholar 

  33. Terris DJ, Seybt MW, Siupsinskiene N, Gourin CG, Chin E. Thyroid surgery: changing patterns of practice. Laryngoscope. 2006;116(6):911–5.

    Article  PubMed  Google Scholar 

  34. Schmidt WA. Principles and techniques of surgical pathology. Menlo Park, CA: Addison Wesley Publishing Company; 1983.

    Google Scholar 

  35. Ghossein R. Protocol for the examination of specimens from patients with carcinomas of the thyroid gland [Internet]. Edition #: Thyroid 3.0.0.2. College of American Pathologists; 2012. Available from: http://www.cap.org/cancerprotocols

  36. Grodski S, Brown T, Sidhu S, Gill A, Robinson B, Learoyd D, et al. Increasing incidence of thyroid cancer is due to increased pathologic detection. Surgery. 2008;144(6):1038–43. discussion 1043

    Article  PubMed  Google Scholar 

  37. Verkooijen HM, Fioretta G, Pache J-C, Franceschi S, Raymond L, Schubert H, et al. Diagnostic changes as a reason for the increase in papillary thyroid cancer incidence in Geneva. Switzerland Cancer Causes Control. 2003;14(1):13–7.

    Article  PubMed  Google Scholar 

  38. Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28(10):​1336–40.

    Article  PubMed  Google Scholar 

  39. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LDR, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.

    Article  PubMed  Google Scholar 

  40. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  42. Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science. 2000;290(5489):​138–41.

    Article  CAS  PubMed  Google Scholar 

  43. Ricarte-Filho JC, Li S, Garcia-Rendueles MER, Montero-Conde C, Voza F, Knauf JA, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013;123(11):4935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Biondi B, Wartofsky L. Treatment with thyroid hormone. Endocr Rev. 2014;35(3):433–512.

    Article  CAS  PubMed  Google Scholar 

  45. Schonfeld SJ, Lee C, Berrington de González A. Medical exposure to radiation and thyroid cancer. Clin Oncol (R Coll Radiol). 2011;23(4):244–50.

    Article  CAS  Google Scholar 

  46. Suzuki S, Suzuki S, Fukushima T, Midorikawa S, Shimura H, Matsuzuka T, et al. Comprehensive survey results of childhood thyroid ultrasound examinations in Fukushima in the first four years after the Fukushima Daiichi Nuclear Power Plant accident. Thyroid. 2016;26(6):843–51.

    Article  PubMed  Google Scholar 

  47. Imaizumi M, Ohishi W, Nakashima E, Sera N, Neriishi K, Yamada M, et al. Association of radiation dose with prevalence of thyroid nodules among atomic bomb survivors exposed in childhood (2007–-2011). JAMA Intern Med. 2015;175(2):228–36.

    Article  PubMed  Google Scholar 

  48. Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, et al. Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer. 2013;132(5):1222–6.

    Article  CAS  PubMed  Google Scholar 

  49. Fridman M, Lam AK-Y, Krasko O. Characteristics of young adults of Belarus with post-Chernobyl papillary thyroid carcinoma: a long-term follow-up of patients with early exposure to radiation at the 30th anniversary of the accident. Clin Endocrinol (Oxf). 2016;85(6):971–8.

    Article  Google Scholar 

  50. Sampson RJ, Key CR, Buncher CR, Iijima S. Thyroid carcinoma in Hiroshima and Nagasaki. I. Prevalence of thyroid carcinoma at autopsy. JAMA. 1969;209(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  51. Imaizumi M, Usa T, Tominaga T, Neriishi K, Akahoshi M, Nakashima E, et al. Radiation dose-response relationships for thyroid nodules and autoimmune thyroid diseases in Hiroshima and Nagasaki atomic bomb survivors 55-58 years after radiation exposure. JAMA. 2006;295(9):1011–22.

    Article  CAS  PubMed  Google Scholar 

  52. Williams D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene. 2008;27(Suppl 2):S9–18.

    Article  CAS  PubMed  Google Scholar 

  53. Prysyazhnyuk A, Gristchenko V, Fedorenko Z, Gulak L, Fuzik M, Slipenyuk K, et al. Twenty years after the Chernobyl accident: solid cancer incidence in various groups of the Ukrainian population. Radiat Environ Biophys. 2007;46(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  54. Veiga LHS, Holmberg E, Anderson H, Pottern L, Sadetzki S, Adams MJ, et al. Thyroid cancer after childhood exposure to external radiation: an updated pooled analysis of 12 studies. Radiat Res. 2016;185(5):473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasmuson T, Damber L, Johansson L, Johansson R, Larsson L-G. Increased incidence of parathyroid adenomas following X-ray treatment of benign diseases in the cervical spine in adult patients. Clin Endocrinol (Oxf). 2002;57(6):731–4.

    Article  Google Scholar 

  56. National Council on Radiation Protection and Management. NRCP Report No. 160, Ionizing Radiation Exposure of the Population of the United States. 2009; pp. 1–377.

    Google Scholar 

  57. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  58. Berrington de González A, Mahesh M, Kim K-P, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7.

    Article  PubMed  Google Scholar 

  59. Moir W, Zeig-Owens R, Daniels RD, Hall CB, Webber MP, Jaber N, et al. Post-9/11 cancer incidence in World Trade Center-exposed New York City firefighters as compared to a pooled cohort of firefighters from San Francisco, Chicago and Philadelphia (9/11/2001-2009). Am J Ind Med. 2016;59(9):722–30.

    Article  PubMed  Google Scholar 

  60. Chen T-Y, Hsu C-C, Feng I-J, Wang J-J, Su S-B, Guo H-R, et al. Higher risk for thyroid diseases in physicians than in the general population: a Taiwan nationwide population-based secondary analysis study. QJM. 2016; doi:10.1093/qjmed/hcw140.

    Google Scholar 

  61. Aschebrook-Kilfoy B, Ward MH, Della Valle CT, Friesen MC. Occupation and thyroid cancer. Occup Environ Med. 2014;71(5):366–80.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kjaer TK, Hansen J. Cancer incidence among large cohort of female Danish registered nurses. Scand J Work Environ Health. 2009;35(6):446–53.

    Article  PubMed  Google Scholar 

  63. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007;132(6):2087–102.

    Article  PubMed  Google Scholar 

  64. Schmid D, Behrens G, Jochem C, Keimling M, Leitzmann M. Physical activity, diabetes, and risk of thyroid cancer: a systematic review and meta-analysis. Eur J Epidemiol. 2013;28(12):945–58.

    Article  PubMed  Google Scholar 

  65. Kitahara CM, Platz EA, Freeman LEB, Hsing AW, Linet MS, Park Y, et al. Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies. Cancer Epidemiol Biomark Prev. 2011;20(3):464–72.

    Article  Google Scholar 

  66. Zhao ZG, Guo XG, Ba CX, Wang W, Yang YY, Wang J, et al. Overweight, obesity and thyroid cancer risk: a meta-analysis of cohort studies. J Int Med Res. 2012;40(6):2041–50.

    Article  CAS  PubMed  Google Scholar 

  67. Pazaitou-Panayiotou K, Polyzos SA, Mantzoros CS. Obesity and thyroid cancer: epidemiologic associations and underlying mechanisms. Obes Rev. 2013;14(12):1006–22.

    Article  CAS  PubMed  Google Scholar 

  68. Uddin S, Bavi P, Siraj AK, Ahmed M, Al-Rasheed M, Hussain AR, et al. Leptin-R and its association with PI3K/AKT signaling pathway in papillary thyroid carcinoma. Endocr Relat Cancer. 2010;17(1):191–202.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng S-P, Yin P-H, Hsu Y-C, Chang Y-C, Huang S-Y, Lee J-J, et al. Leptin enhances migration of human papillary thyroid cancer cells through the PI3K/AKT and MEK/ERK signaling pathways. Oncol Rep. 2011;26(5):1265–71.

    CAS  PubMed  Google Scholar 

  70. Akinci M, Kosova F, Cetin B, Aslan S, Ari Z, Cetin A. Leptin levels in thyroid cancer. Asian J Surg. 2009;32(4):216–23.

    Article  PubMed  Google Scholar 

  71. Zhang G-A, Hou S, Han S, Zhou J, Wang X, Cui W. Clinicopathological implications of leptin and leptin receptor expression in papillary thyroid cancer. Oncol Lett. 2013;5(3):797–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mitsiades N, Pazaitou-Panayiotou K, Aronis KN, Moon H-S, Chamberland JP, Liu X, et al. Circulating adiponectin is inversely associated with risk of thyroid cancer: in vivo and in vitro studies. J Clin Endocrinol Metab. 2011;96(12):E2023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim HJ, Kim NK, Choi JH, Sohn SY, Kim SW, Jin S-M, et al. Associations between body mass index and clinico-pathological characteristics of papillary thyroid cancer. Clin Endocrinol (Oxf). 2013;78(1):134–40.

    Article  Google Scholar 

  74. Choi JS, Kim E-K, Moon HJ, Kwak JY. Higher body mass index may be a predictor of extrathyroidal extension in patients with papillary thyroid microcarcinoma. Endocrine. 2015;48(1):264–71.

    Article  CAS  PubMed  Google Scholar 

  75. Kitahara CM, Gamborg M, Berrington de González A, TIA S, Baker JL. Childhood height and body mass index were associated with risk of adult thyroid cancer in a large cohort study. Cancer Res. 2014;74(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  76. Kitahara CM, Neta G, Pfeiffer RM, Kwon D, Xu L, Freedman ND, et al. Common obesity-related genetic variants and papillary thyroid cancer risk. Cancer Epidemiol Biomark Prev. 2012;21(12):​2268–71.

    Article  CAS  Google Scholar 

  77. Bertakis KD, Azari R. Obesity and the use of health care services. Obes Res. 2005;13(2):372–9.

    Article  PubMed  Google Scholar 

  78. Aschebrook-Kilfoy B, Sabra MM, Brenner A, Moore SC, Ron E, Schatzkin A, et al. Diabetes and thyroid cancer risk in the National Institutes of Health-AARP Diet and Health Study. Thyroid. 2011;21(9):957–63.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shih S-R, Chiu W-Y, Chang T-C, Tseng C-H. Diabetes and thyroid cancer risk: literature review. Exp Diabetes Res. 2012;2012. Article ID: 578285.

    Google Scholar 

  80. Tramontano D, Cushing GW, Moses AC, Ingbar SH. Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’-IgG. Endocrinology. 1986;119(2):​940–2.

    Article  CAS  PubMed  Google Scholar 

  81. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006;29(2):254–8.

    Article  PubMed  Google Scholar 

  82. Stocks T, Rapp K, Bjørge T, Manjer J, Ulmer H, Selmer R, et al. Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of six prospective cohorts. PLoS Med. 2009;6(12):e1000201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Tseng C-H. Thyroid cancer risk is not increased in diabetic patients. PLoS One. 2012;7(12):e53096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Farooki and Schneider. Diabetes Care. 2006;29(8):1990–1.

    Article  PubMed  Google Scholar 

  85. Keum N, Greenwood DC, Lee DH, Kim R, Aune D, Ju W, et al. Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst. 2015;107(2) doi:10.1093/jnci/djv088. pii:djv088

  86. Furlanetto TW, Nguyen LQ, Jameson JL. Estradiol increases proliferation and down-regulates the sodium/iodide symporter gene in FRTL-5 cells. Endocrinology. 1999;140(12):5705–11.

    Article  CAS  PubMed  Google Scholar 

  87. Kumar A, Klinge CM, Goldstein RE. Estradiol-induced proliferation of papillary and follicular thyroid cancer cells is mediated by estrogen receptors alpha and beta. Int J Oncol. 2010;36(5):1067–80.

    CAS  PubMed  Google Scholar 

  88. Manole D, Schildknecht B, Gosnell B, Adams E, Derwahl M. Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metab. 2001;86(3):​1072–7.

    CAS  PubMed  Google Scholar 

  89. Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A, et al. 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol. 2006;70(4):1414–23.

    Article  CAS  PubMed  Google Scholar 

  90. Zahid M, Goldner W, Beseler CL, Rogan EG, Cavalieri EL. Unbalanced estrogen metabolism in thyroid cancer. Int J Cancer. 2013;133(11):2642–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Magri F, Capelli V, Rotondi M, Leporati P, La Manna L, Ruggiero R, et al. Expression of estrogen and androgen receptors in differentiated thyroid cancer: an additional criterion to assess the patient’s risk. Endocr Relat Cancer. 2012;19(4):463–71.

    Article  CAS  PubMed  Google Scholar 

  92. Cao Y, Wang Z, Gu J, Hu F, Qi Y, Yin Q, et al. Reproductive factors but not hormonal factors associated with thyroid cancer risk: a systematic review and meta-analysis. Biomed Res Int 2015;2015. Article ID: 103515.

    Google Scholar 

  93. Cléro É, Doyon F, Chungue V, Rachédi F, Boissin J-L, Sebbag J, et al. Dietary iodine and thyroid cancer risk in French Polynesia: a case-control study. Thyroid. 2012;22(4):422–429.

    Google Scholar 

  94. Lawal O, Agbakwuru A, Olayinka OS, Adelusola K. Thyroid malignancy in endemic nodular goitres: prevalence, pattern and treatment. Eur J Surg Oncol. 2001;27(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  95. Knobel M, Medeiros-Neto G. Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq Bras Endocrinol Metabol. 2007;51(5):701–12.

    Article  PubMed  Google Scholar 

  96. Sehestedt T, Knudsen N, Perrild H, Johansen C. Iodine intake and incidence of thyroid cancer in Denmark. Clin Endocrinol (Oxf). 2006;65(2):​229–33.

    Article  CAS  Google Scholar 

  97. Burgess JR, Dwyer T, McArdle K, Tucker P, Shugg D. The changing incidence and spectrum of thyroid carcinoma in Tasmania (1978–1998) during a transition from iodine sufficiency to iodine deficiency. J Clin Endocrinol Metab. 2000;85(4):1513–7.

    CAS  PubMed  Google Scholar 

  98. Harach HR, Escalante DA, Day ES. Thyroid cancer and thyroiditis in Salta, Argentina: a 40-yr study in relation to iodine prophylaxis. Endocr Pathol. 2002;13(3):175–81.

    Article  PubMed  Google Scholar 

  99. Maravall FJ, Gómez-Arnáiz N, Gumá A, Abós R, Soler J, Gómez JM. Reference values of thyroid volume in a healthy, non-iodine-deficient Spanish population. Horm Metab Res. 2004;36(9):645–9.

    Article  CAS  PubMed  Google Scholar 

  100. Lukas J, Drabek J, Lukas D, Dusek L, Gatek J. The epidemiology of thyroid cancer in the Czech Republic in comparison with other countries. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013;157(3):266–75.

    PubMed  Google Scholar 

  101. Aschebrook-Kilfoy B, Shu X-O, Gao Y-T, Ji B-T, Yang G, Li HL, et al. Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women’s health study. Int J Cancer. 2013;132(4):897–904.

    Article  CAS  PubMed  Google Scholar 

  102. Kilfoy BA, Zhang Y, Park Y, Holford TR, Schatzkin A, Hollenbeck A, et al. Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP Diet and Health Study. Int J Cancer. 2011;129(1):160–72.

    Article  CAS  PubMed  Google Scholar 

  103. Ward MH, Kilfoy BA, Weyer PJ, Anderson KE, Folsom AR, Cerhan JR. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology. 2010;21(3):389–95.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bahadoran Z, Mirmiran P, Ghasemi A, Kabir A, Azizi F, Hadaegh F. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis. Nitric Oxide. 2015;47:65–76.

    Article  CAS  PubMed  Google Scholar 

  105. Baser H, Ozdemir D, Cuhaci N, Aydin C, Ersoy R, Kilicarslan A, et al. Hashimoto’s thyroiditis does not affect ultrasonographical, cytological, and histopathological features in patients with papillary thyroid carcinoma. Endocr Pathol. 2015;26(4):356–64.

    Article  PubMed  Google Scholar 

  106. Tamimi DM. The association between chronic lymphocytic thyroiditis and thyroid tumors. Int J Surg Pathol. 2002;10(2):141–6.

    Article  PubMed  Google Scholar 

  107. Zayed AA, Ali MKM, Jaber OI, Suleiman MJ, Ashhab AA, Al Shweiat WM, et al. Is Hashimoto’s thyroiditis a risk factor for medullary thyroid carcinoma? Our experience and a literature review. Endocrine. 2015;48(2):629–36.

    Article  CAS  PubMed  Google Scholar 

  108. Jankovic B, Le KT, Hershman JM. Clinical review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab. 2013;98(2):474–82.

    Article  CAS  PubMed  Google Scholar 

  109. Singh B, Shaha AR, Trivedi H, Carew JF, Poluri A, Shah JP. Coexistent Hashimoto’s thyroiditis with papillary thyroid carcinoma: impact on presentation, management, and outcome. Surgery. 1999;126(6):​1070–6. discussion 1076

    Article  CAS  PubMed  Google Scholar 

  110. Kitahara CM, Linet MS, Beane Freeman LE, Check DP, Church TR, Park Y, et al. Cigarette smoking, alcohol intake, and thyroid cancer risk: a pooled analysis of five prospective studies in the United States. Cancer Causes Control. 2012;23(10):1615–24.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wiersinga WM. Smoking and thyroid. Clin Endocrinol (Oxf). 2013;79(2):145–51.

    Article  CAS  Google Scholar 

  112. Holm IA, Manson JE, Michels KB, Alexander EK, Willett WC, Utiger RD. Smoking and other lifestyle factors and the risk of Graves’ hyperthyroidism. Arch Intern Med. 2005;165(14):1606–11.

    Article  PubMed  Google Scholar 

  113. Strieder TGA, Prummel MF, Tijssen JGP, Endert E, Wiersinga WM. Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin Endocrinol (Oxf). 2003;59(3):396–401.

    Article  Google Scholar 

  114. Vestergaard P. Smoking and thyroid disorders--a meta-analysis. Eur J Endocrinol. 2002;146(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  115. Ng M, Freeman MK, Fleming TD, Robinson M, Dwyer-Lindgren L, Thomson B, et al. Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA. 2014;311(2):183–92.

    Article  CAS  PubMed  Google Scholar 

  116. Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. 2016;12(11):​646–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Schmidt, B., Davies, L. (2017). The Rising Incidence of Thyroid Cancer: Contributions from Healthcare Practice and Biologic Risk Factors. In: Mancino, A., Kim, L. (eds) Management of Differentiated Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-54493-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54493-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54492-2

  • Online ISBN: 978-3-319-54493-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics