Skip to main content

Assessing the Relationship Between City Compactness and Residential Land Use Growth

  • Chapter
  • First Online:
Spatial Modeling and Assessment of Urban Form

Abstract

The growth of residential land use is more significant than that of other urban land uses. This growth causes the destruction of large areas of natural environment for residential development, especially in sprawl urban expansion. By contrast, a compact and centralized urban pattern, as one of the most sustainable urban forms because of its environmental conservation principles, such as rural development containment and efficient land consumption, controls the growth of urban land uses into natural environments. However, a proper analysis of the reciprocal relationship between residential growth and compact development is necessary to predict and propose different future alternative scenarios. This chapter deals with this issue through a case study of Rajang City in Malaysia, which is a tropical region with large forest areas and agricultural fields. First, the city compactness of the study area is assessed with respect to residential land use changes. Second, the growth of residential areas is predicted by using two common land use change modeling approaches and the future residential maps are evaluated with respect to city compactness maps. In this manner, the performances of the selected models are also evaluated for land use change modeling applications in terms of model accuracy, complexity, and functional relationships between dependent and independent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullahi, S., Mahmud, A. R. B., & Pradhan, B. (2014). Spatial modelling of site suitability assessment for hospitals using geographical information system-based multicriteria approach at Qazvin city, Iran. Geocarto International, 29(2), 164–184.

    Google Scholar 

  • Abdullahi, S., & Pradhan, B. (2015). Sustainable brownfields land use change modeling using GIS-based weights-of-evidence approach. Applied Spatial Analysis and Policy, 1–18.

    Google Scholar 

  • Abdullahi, S., Pradhan, B., & Jebur, M. N. (2015a). GIS-based sustainable city compactness assessment using integration of MCDM, Bayes theorem and RADAR technology. Geocarto International, 30(4), 365–387.

    Article  Google Scholar 

  • Abdullahi, S., Pradhan, B., Mansor, S., & Shariff, A. R. M. (2015b). GIS-based modeling for the spatial measurement and evaluation of mixed land use development for a compact city. GIScience & Remote Sensing, 52(1), 18–39.

    Article  Google Scholar 

  • Alberti, M., Booth, D., Hill, K., Coburn, B., Avolio, C., Coe, S., et al. (2007). The impact of urban patterns on aquatic ecosystems: an empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning, 80(4), 345–361.

    Article  Google Scholar 

  • Beatley, T. (2012). Green urbanism: Learning from European cities. Island Press.

    Google Scholar 

  • Bohman-Carter, G. (1994). Geographic information systems for geoscientists. Pergamon: Oxford.

    Google Scholar 

  • Burnside, N. G., Smith, R. F., & Waite, S. (2003). Recent historical land use change on the South Downs, United Kingdom. Environmental Conservation, 30(01), 52–60.

    Article  Google Scholar 

  • Burton, E. (2000). The compact city: Just or just compact? A preliminary analysis. Urban Studies, 37(11), 1969–2006.

    Article  Google Scholar 

  • Burton, E. (2002). Measuring urban compactness in UK towns and cities. Environment and Planning B, 29(2), 219–250.

    Article  Google Scholar 

  • Burton, E., Jenks, M., & Williams, K. (2003). The compact city: A sustainable urban form? Routledge.

    Google Scholar 

  • Chang, I.-C. C., & Sheppard, E. (2013). China’s eco-cities as variegated 1 urban sustainability: Dongtan eco-city and Chongming eco-island. Journal of Urban Technology, 20(1), 57–75.

    Article  Google Scholar 

  • Chen, C., He, B., & Zeng, Z. (2014a). A method for mineral prospectivity mapping integrating C4. 5 decision tree, weights-of-evidence and m-branch smoothing techniques: a case study in the eastern Kunlun Mountains, China. Earth Science Informatics, 7(1), 13–24.

    Article  Google Scholar 

  • Chen, J., Chang, K.-T., Karacsonyi, D., & Zhang, X. (2014b). Comparing urban land expansion and its driving factors in Shenzhen and Dongguan, China. Habitat International, 43, 61–71.

    Article  Google Scholar 

  • Dadhich, P. N., & Hanaoka, S. (2011). Spatio-temporal urban growth modeling of Jaipur, India. Journal of Urban Technology, 18(3), 45–65.

    Article  Google Scholar 

  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324.

    Article  Google Scholar 

  • de Almeida, C. M., Batty, M., Monteiro, A. M. V., Câmara, G., Soares-Filho, B. S., Cerqueira, G. C., et al. (2003). Stochastic cellular automata modeling of urban land use dynamics: Empirical development and estimation. Computers, Environment and Urban Systems, 27(5), 481–509.

    Article  Google Scholar 

  • Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics, 325–339.

    Google Scholar 

  • Gainza, X., & Livert, F. (2013). Urban form and the environmental impact of commuting in a segregated city, Santiago de Chile. Environment and Planning B: Planning and Design, 40(3), 507–522.

    Article  Google Scholar 

  • Gu, Z., Sun, Q., & Wennersten, R. (2013). Impact of urban residences on energy consumption and carbon emissions: An investigation in Nanjing, China. Sustainable Cities and Society, 7, 52–61.

    Article  Google Scholar 

  • Houet, T., Loveland, T. R., Hubert-Moy, L., Gaucherel, C., Napton, D., Barnes, C. A., et al. (2010). Exploring subtle land use and land cover changes: A framework for future landscape studies. Landscape Ecology, 25(2), 249–266.

    Article  Google Scholar 

  • Kolb, M., Mas, J.-F., & Galicia, L. (2013). Evaluating drivers of land-use change and transition potential models in a complex landscape in Southern Mexico. International Journal of Geographical Information Science, 27(9), 1804–1827.

    Article  Google Scholar 

  • Kuijpers, M. A. J., Bouwman, A., & Natuurplanbureau, M.-E. (2007). Nederland later: Tweede duurzaamheidsverkenning: Deel fysieke leefomgeving Nederland. Milieu en Natuur Planbureau Bilthoven.

    Google Scholar 

  • Lantman, J. V. S., Verburg, P. H., Bregt, A., & Geertman, S. (2011). Core principles and concepts in land-use modelling: A literature review. Land-Use Modelling in Planning Practice (pp. 35–57). Springer.

    Google Scholar 

  • Li, X., Yang, Q., & Liu, X. (2008). Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landscape and Urban Planning, 86(2), 177–186.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G.-O. (2004). Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landscape and Urban Planning, 69(4), 335–354.

    Article  Google Scholar 

  • Livingstone, K., & Authority, G. L. (2003). Housing for a compact city. Greater London authority.

    Google Scholar 

  • Manaugh, K., & Kreider, T. (2013). What is mixed use? Presenting an interaction method for measuring land use mix. Journal of Transport and Land Use, 6(1), 63–72.

    Google Scholar 

  • Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22(10), 1447–1459.

    Article  Google Scholar 

  • Middel, A., Brazel, A., Hagen, B., & Myint, S. (2011). Land cover modification scenarios and their effects on daytime heating in the inner core residential neighborhoods of Phoenix, Arizona. Journal of Urban Technology, 18(4), 61–79.

    Article  Google Scholar 

  • Mubareka, S., Koomen, E., Estreguil, C., & Lavalle, C. (2011). Development of a composite index of urban compactness for land use modelling applications. Landscape and Urban Planning, 103(3), 303–317.

    Article  Google Scholar 

  • Musakwa, W., & Van Niekerk, A. (2013). Implications of land use change for the sustainability of urban areas: A case study of Stellenbosch, South Africa. Cities, 32, 143–156.

    Article  Google Scholar 

  • Petsch, S., Guhathakurta, S., Heischbourg, L., Müller, K., & Hagen, H. (2011). Modeling, monitoring, and visualizing carbon footprints at the urban neighborhood scale. Journal of Urban Technology, 18(4), 81–96.

    Article  Google Scholar 

  • Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.

    Article  Google Scholar 

  • Pijanowski, B. C., Pithadia, S., Shellito, B. A., & Alexandridis, K. (2005). Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science, 19(2), 197–215.

    Article  Google Scholar 

  • Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: Configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environmental Modelling and Software, 51, 250–268.

    Article  Google Scholar 

  • Pontius, R. G., Jr., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429.

    Article  Google Scholar 

  • Pontius, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1), 239–248.

    Article  Google Scholar 

  • Pradhan, B. (2011). An assessment of the use of an advanced neural network model with five different training strategies for the preparation of landslide susceptibility maps. Journal of Data Science, 9(1), 65–81.

    Google Scholar 

  • Pradhan, B., Oh, H.-J., & Buchroithner, M. (2010). Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Natural Hazards and Risk, 1(3), 199–223.

    Article  Google Scholar 

  • Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1), 172–187.

    Article  Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence (Vol. 1). Princeton university press Princeton.

    Google Scholar 

  • Song, Y., & Knaap, G.-J. (2004). Measuring the effects of mixed land uses on housing values. Regional Science and Urban Economics, 34(6), 663–680.

    Article  Google Scholar 

  • Song, Y., Merlin, L., & Rodriguez, D. (2013). Comparing measures of urban land use mix. Computers, Environment and Urban Systems, 42, 1–13.

    Article  Google Scholar 

  • Tayyebi, A., & Pijanowski, B. C. (2014). Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools. International Journal of Applied Earth Observation and Geoinformation, 28, 102–116.

    Article  Google Scholar 

  • Tayyebi, A., Pijanowski, B. C., Linderman, M., & Gratton, C. (2014). Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world. Environmental Modelling and Software, 59, 202–221.

    Article  Google Scholar 

  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.

    Article  Google Scholar 

  • Thiam, A. K. (2005). An evidential reasoning approach to land degradation evaluation: Dempster-Shafer theory of evidence. Transactions in GIS, 9(4), 507–520.

    Article  Google Scholar 

  • Thinh, N. X., Arlt, G., Heber, B., Hennersdorf, J., & Lehmann, I. (2002). Evaluation of urban land-use structures with a view to sustainable development. Environmental Impact Assessment Review, 22(5), 475–492.

    Article  Google Scholar 

  • Van Eck, J. R., & Koomen, E. (2008). Characterising urban concentration and land-use diversity in simulations of future land use. The Annals of Regional Science, 42(1), 123–140.

    Article  Google Scholar 

  • Xu, Z. (2011). Application of system dynamics model and GIS in sustainability assessment of urban residential development. In Paper presented at the Proceedings of the 29th International Conference of the System Dynamics Society, Washington, DC, July.

    Google Scholar 

  • Youssef, A. M., Pradhan, B., Pourghasemi, H. R., & Abdullahi, S. (2015). Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS. Geosciences Journal, 19(3), 449–469.

    Article  Google Scholar 

  • Zahiri, H., Palamara, D., Flentje, P., Brassington, G. M., & Baafi, E. (2006). A GIS-based weights-of-evidence model for mapping cliff instabilities associated with mine subsidence. Environmental Geology, 51(3), 377–386.

    Article  Google Scholar 

  • Zell, A., Mache, N., Hübner, R., Mamier, G., Vogt, M., Schmalzl, M., & Herrmann, K.-U. (1994). SNNS (stuttgart neural network simulator) Neural Network Simulation Environments (pp. 165–186). Springer.

    Google Scholar 

  • Zurada, J. (1992). Introduction to artificial neural systems, 1992. St. Paul: Went Publishing Company.

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Selangor town and country planning department (JPBD) in Rajang City for providing various thematic and social information of Rajang area. In addition, we wish to thank the Ministry of Higher Education, Malaysia for financial supporting of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdullahi, S., Pradhan, B., Mojaddadi, H. (2017). Assessing the Relationship Between City Compactness and Residential Land Use Growth. In: Pradhan, B. (eds) Spatial Modeling and Assessment of Urban Form. Springer, Cham. https://doi.org/10.1007/978-3-319-54217-1_6

Download citation

Publish with us

Policies and ethics