Skip to main content

Ultra-Shallow DoF Imaging Using Faced Paraboloidal Mirrors

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10113))

Included in the following conference series:

Abstract

We propose a new imaging method that achieves an ultra-shallow depth of field (DoF) to clearly visualize a particular depth in a 3-D scene. The key optical device consists of a pair of faced paraboloidal mirrors with holes around their vertexes. In the device, a lens-less image sensor is set at one side of their holes and an object is set at the opposite side. The characteristic of the device is that the shape of the point spread function varies depending on both the positions of the target 3-D point and the image sensor. By leveraging this characteristic, we reconstruct a clear image for a particular depth by solving a linear system involving position-dependent point spread functions. In experiments, we demonstrate the effectiveness of the proposed method using both simulation and an actually developed prototype imaging system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings SIGGRAPH, pp. 31–42 (1996)

    Google Scholar 

  2. Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane + parallax for calibrating dense camera arrays. In: Proceedings CVPR, vol. 1, pp. I-2–I-9 (2004)

    Google Scholar 

  3. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera array. ACM Trans. Graph. 24(3), 765–776 (2005)

    Article  Google Scholar 

  4. Adelson, E.H., Wang, J.Y.A.: Single lens stereo with a plenoptic camera. IEEE Trans. PAMI 14(2), 99–106 (1992)

    Article  Google Scholar 

  5. Ng, R., Levoy, M., Bredif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera. Proc. CTSR 2(11), 1–11 (2005)

    Google Scholar 

  6. Cossairt, O., Nayar, S., Ramamoorthi, R.: Light field transfer: global illumination between real and synthetic objects. ACM Trans. Graph. 27(3), 57:1–57:6 (2008)

    Article  Google Scholar 

  7. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. 26(3), 69–76 (2007)

    Article  Google Scholar 

  8. Liang, C., Lin, T., Wong, B., Liu, C., Chen, H.H.: Programmable aperture photography: multiplexed light field acquisition. ACM Trans. Graph. 27(5), 55-1–55-10 (2008)

    Google Scholar 

  9. Unger, J., Wenger, A., Hawkins, T., Gardner, A., Debevec, P.: Capturing and rendering with incident light fields. In: Proceedings EGSR, pp. 141–149 (2003)

    Google Scholar 

  10. Lanman, D., Crispell, D., Wachs, M., Taubin, G.: Spherical catadioptric arrays: construction, multi-view geometry, and calibration. In: Proceedings 3DPVT, pp. 81–88 (2006)

    Google Scholar 

  11. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., Bolas, M.: Synthetic aperture confocal imaging. In: Proceedings SIGGRAPH, pp. 825–834 (2004)

    Google Scholar 

  12. Tagawa, S., Mukaigawa, Y., Kim, J., Raskar, R., Matsushita, Y., Yagi, Y.: Hemispherical confocal imaging. IPSJ Trans. CVA 3, 222–235 (2011)

    Google Scholar 

  13. Minsky, M.: Microscopy apparatus. US Patent 3013467 (1961)

    Google Scholar 

  14. White, J., Amos, W.B.: An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. JCB 501(1), 41–48 (1987)

    Article  Google Scholar 

  15. Tanaami, T., Otsuki, S., Tomosada, N., Kosugi, Y., Shimizu, M., Ishida, H.: High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 41(22), 4704–4708 (2002)

    Article  Google Scholar 

  16. Adhya, S., Noé, J.: A complete ray-trace analysis of the ‘Mirage’ toy. In: Proceedinigs SPIE ETOP, pp. 966518-1–966518-7 (2007)

    Google Scholar 

  17. Butler, A., Hilliges, O., Izadi, S., Hodges, S., Molyneaux, D., Kim, D., Kong, D.: Vermeer: direct interaction with a 360\(^\circ \) viewable 3D display. In: Proceedings UIST, pp 569–576 (2011)

    Google Scholar 

  18. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS Grant-in-Aid for Research Activity Start-up Grant Number 16H06982.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichiro Nishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nishi, R., Aoto, T., Kawai, N., Sato, T., Mukaigawa, Y., Yokoya, N. (2017). Ultra-Shallow DoF Imaging Using Faced Paraboloidal Mirrors. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10113. Springer, Cham. https://doi.org/10.1007/978-3-319-54187-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54187-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54186-0

  • Online ISBN: 978-3-319-54187-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics