Skip to main content

An Online Algorithm for Efficient and Temporally Consistent Subspace Clustering

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

  • 3048 Accesses

Abstract

We present an online algorithm for the efficient clustering of data drawn from a union of arbitrary dimensional, non-static subspaces. Our algorithm is based on an online min-Mahalanobis distance classifier, which simultaneously clusters and is updated from subspace data. In contrast to most existing methods, our algorithm can cope with large amounts of batch or sequential data and is temporally consistent when dealing with time varying data (i.e. time-series). Starting from an initial condition, the classifier provides a first estimate of the subspace clusters in the current time-window. From this estimate, we update the classifier using stochastic gradient descent. The updated classifier is applied back onto the data to refine the subspace clusters, while at the same time we recover the explicit rotations that align the subspaces between time- windows. The whole procedure is repeated until convergence, resulting in a fast, efficient and accurate algorithm. We have tested our algorithm on synthetic and three real datasets and compared with competing methods from literature. Our results show that our algorithm outperforms the competition with superior clustering accuracy and computation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vidal, R.: Subspace clustering. IEEE Signal Process. Mag. 28, 52–68 (2011)

    Article  Google Scholar 

  2. Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)

    Book  MATH  Google Scholar 

  3. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data. Data Min. Knowl. Disc. 11, 5–33 (2005)

    Article  MathSciNet  Google Scholar 

  4. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR (2009)

    Google Scholar 

  5. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: ICML (2010)

    Google Scholar 

  6. Zografos, V., Ellis, L., Mester, R.: Discriminative subspace clustering. In: CVPR (2013)

    Google Scholar 

  7. Vidal, R., Favaro, P.: Low rank subspace clustering (LRSC). Pattern Recogn. Lett. 43, 47–61 (2014)

    Article  Google Scholar 

  8. Patel, V.M., Nguyen, H.V., Vidal, R.: Latent space sparse and low-rank subspace clustering. IEEE J. Sel. Top. Sign. Proces. 9, 691–701 (2015)

    Article  Google Scholar 

  9. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: NIPS (2001)

    Google Scholar 

  10. Wang, S., Fan, Y., Zhang, C., Xu, H., Hao, X., Hu, Y.: Subspace clustering of high dimensional data streams. In: 2008 Seventh IEEE/ACIS International Conference on Computer and Information Science, ICIS 2008, pp. 165–170 (2008)

    Google Scholar 

  11. Park, N.H., Lee, W.S.: Memory efficient subspace clustering for online data streams. In: Proceedings of the 2008 International Symposium on Database Engineering and Applications, IDEAS 2008, pp. 199–208 (2008)

    Google Scholar 

  12. Peng, X., Zhang, L., Yi, Z.: Scalable sparse subspace clustering. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 430–437 (2013)

    Google Scholar 

  13. Peng, X., Zhang, L., Yi, Z.: Inductive sparse subspace clustering. Electron. Lett. 49, 1222–1224 (2013)

    Article  Google Scholar 

  14. Vidal, R.: Online clustering of moving hyperplanes. In: Advances in Neural Information Processing Systems 19, pp. 1433–1440. MIT Press (2006)

    Google Scholar 

  15. Wang, J., Fu, Z.: Online motion segmentation based on sparse subspace clustering. J. Inf. Comput. Sci. 12, 1293–1300 (2015)

    Article  Google Scholar 

  16. Arandjelovic, O., Cipolla, R.: Incremental learning of temporally-coherent gaussian mixture models. In: BMVC (2005)

    Google Scholar 

  17. Engel, P.M., Heinen, M.R.: Incremental learning of multivariate gaussian mixture models. In: Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA 2010. LNCS (LNAI), vol. 6404, pp. 82–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16138-4_9

    Chapter  Google Scholar 

  18. Declercq, A., Piater, J.: Online learning of gaussian mixture models - a two-level approach. In: VISAPP (2008)

    Google Scholar 

  19. Bottou, L., Bengio, Y.: Convergence properties of the K-Means algorithm. In: Advances in Neural Information Processing Systems (1995)

    Google Scholar 

  20. Bradley, S., Mangasarian, O.: K-plane clustering. J. Global Optim. 16(1), 23–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tseng, P.: Nearest q-flat to M points. J. Optim. Theory Appl. 105, 249–252 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, D., Ding, C., Li, T.: K-subspace clustering. Mach. Learn. Knowl. Disc. Databases 5782, 506–521 (2009)

    Article  Google Scholar 

  23. Bottou, L.: Online algorithms and stochastic approximations. In: Online Learning and Neural Networks. Cambridge University Press (1998)

    Google Scholar 

  24. Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21, 124–127 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, G., Lerman, G.: Spectral curvature clustering (SCC). IJCV 81, 317–330 (2009)

    Article  Google Scholar 

  26. Tron, P., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: CVPR (2007)

    Google Scholar 

  27. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE PAMI 27, 1945–1959 (2005)

    Article  Google Scholar 

  28. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86 (1998)

    Google Scholar 

  29. Péteri, R., Fazekas, S., Huiskes, M.J.: Dyntex: a comprehensive database of dynamic textures. Pattern Recogn. Lett. 31, 1627–1632 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the TU Munchen - IAS (funded by the German Excellence Initiative and the EU 7th Framework Programme under grant agreement no. 291763, the Marie Curie COFUND program of the EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Zografos .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 179 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zografos, V., Krajsek, K., Menze, B. (2017). An Online Algorithm for Efficient and Temporally Consistent Subspace Clustering. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics