Skip to main content

Computing 3-D Expected Hypervolume Improvement and Related Integrals in Asymptotically Optimal Time

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Included in the following conference series:

Abstract

The Expected Hypervolume Improvement (EHVI) is a frequently used infill criterion in surrogate-assisted multi-criterion optimization. It needs to be frequently called during the execution of such algorithms. Despite recent advances in improving computational efficiency, its running time for three or more objectives has remained in \(O(n^d)\) for \(d\ge 3\), where d is the number of objective functions and n is the size of the incumbent Pareto-front approximation. This paper proposes a new integration scheme, which makes it possible to compute the EHVI in \(\varTheta (n \log n)\) optimal time for the important three-objective case (\(d=3\)). The new scheme allows for a generalization to higher dimensions and for computing the Probability of Improvement (PoI) integral efficiently. It is shown, both theoretically and empirically, that the hidden constant in the asymptotic notation is small. Empirical speed comparisons were designed between the C++ implementations of the new algorithm (which will be in the public domain) and those recently published by competitors, on randomly-generated non-dominated fronts of size 10, 100, and 1000. The experiments include the analysis of batch computations, in which only the parameters of the probability distribution change but the incumbent Pareto-front approximation stays the same. Experimental results show that the new algorithm is always faster than the other algorithms, sometimes over \(10^4\) times faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also called Efficient Global Optimization [9].

References

  1. Zaefferer, M., Bartz-Beielstein, T., Naujoks, B., Wagner, T., Emmerich, M.: A case study on multi-criteria optimization of an event detection software under limited budgets. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 756–770. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37140-0_56

    Chapter  Google Scholar 

  2. Yang, K., Deutz, A., Yang, Z., Bäck, T., Emmerich, M.: Truncated expected hypervolume improvement: exact computation and application. In: IEEE Congress on Evolutionary Computation (CEC). IEEE (2016)

    Google Scholar 

  3. Yang K, Gaida D, Bäck T, Emmerich M.: Expected hypervolume improvement algorithm for PID controller tuning and the multiobjective dynamical control of a biogas plant. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1934–1942, May 2015

    Google Scholar 

  4. Michael, T.M., Giannakoglou, K.C., Naujoks, B.: Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)

    Article  Google Scholar 

  5. Koch, P., Wagner, T., Emmerich, M.T., Bäck, T., Konen, W.: Efficient multi-criteria optimization on noisy machine learning problems. Appl. Soft Comput. 29, 357–370 (2015)

    Article  Google Scholar 

  6. Shimoyama, K., Jeong, S., Obayashi, S.: Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems. In: IEEE Congress on Evolutionary Computation (CEC), pp. 658–665. IEEE (2013)

    Google Scholar 

  7. Shimoyama, K., Sato, K., Jeong, S., Obayashi, S.: Comparison of the criteria for updating kriging response surface models in multi-objective optimization. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  8. Couckuyt, I., Deschrijver, D., Dhaene, T.: Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization. J. Global Optim. 60(3), 575–594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mockus, J., Tiešis, V., Žilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Towards Global Optimization, vol. 2, pp. 117–131. North-Holland, Amsterdam (1978)

    Google Scholar 

  11. Wagner, T., Emmerich, M., Deutz, A., Ponweiser, W.: On expected-improvement criteria for model-based multi-objective optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 718–727. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15844-5_72

    Google Scholar 

  12. Emmerich, M.T., Deutz, A.H., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2147–2154. IEEE (2011)

    Google Scholar 

  13. Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M.: A multicriteria generalization of bayesian global optimization. In: Pardalos, P.M., Zhigljavsky, A., Žilinskas, J. (eds.) Advances in Stochastic and Deterministic Global Optimization. SOIA, vol. 107, pp. 229–242. Springer, Cham (2016). doi:10.1007/978-3-319-29975-4_12

    Chapter  Google Scholar 

  14. Hupkens, I., Deutz, A., Yang, K., Emmerich, M.: Faster exact algorithms for computing expected hypervolume improvement. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 65–79. Springer, Cham (2015). doi:10.1007/978-3-319-15892-1_5

    Google Scholar 

  15. Yang, K., Li, L., Deutz, A., Bäck, T., Emmerich, M.: Preference-based multiobjective optimization using truncated expected hypervolume improvement. In: 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. IEEE (2016)

    Google Scholar 

  16. Vazquez, E., Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Plan. Infer. 140(11), 3088–3095 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knowles, J., Hughes, E.J.: Multiobjective optimization on a budget of 250 evaluations. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 176–190. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_13

    Chapter  Google Scholar 

  18. Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44(4), 879–891 (2006)

    Article  Google Scholar 

  19. Shimoyama, K., Sato, K., Jeong, S., Obayashi, S.: Updating kriging surrogate models based on the hypervolume indicator in multi-objective optimization. J. Mech. Des. 135(9), 094503–094503-7 (2013)

    Article  Google Scholar 

  20. Svenson, J., Santner, T.: Multiobjective optimization of expensive-to-evaluate deterministic computer simulator models. Comput. Stat. Data Anal. 94, 250–264 (2016)

    Article  MathSciNet  Google Scholar 

  21. Emmerich, M.T.M.: Single-and multi-objective evolutionary design optimization assisted by Gaussian random field metamodels. Ph.D. thesis, FB Informatik, University of Dortmund, ELDORADO, Dortmund, 10 (2005)

    Google Scholar 

  22. Shir, O.M., Emmerich, M., Bäckck, T., Vrakking, M.J.: The application of evolutionary multi-criteria optimization to dynamic molecular alignment. In: IEEE Congress on Evolutionary Computation, pp. 4108–4115. IEEE (2007)

    Google Scholar 

  23. Łaniewski-Wołłk, P, Obayashi S, Jeong S.: Development of expected improvement for multi-objective problems. In: Proceedings of 42nd Fluid Dynamics Conference/Aerospace Numerical, Simulation Symposium (CD ROM), Varna, Bulgaria (2010)

    Google Scholar 

  24. Luo, C., Shimoyama, K., Obayashi, S.: Kriging model based many-objective optimization with efficient calculation of expected hypervolume improvement. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1187–1194. IEEE (2014)

    Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  26. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.D.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  27. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theor. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 121–135. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19893-9_9

    Chapter  Google Scholar 

  29. Lacour, R., Klamroth, K., Fonseca, C.M.: A box decomposition algorithm to compute the hypervolume indicator. Comput. Oper. Res. 79, 347–360 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Kaifeng Yang acknowledges financial support from the China Scholarship Council (CSC), CSC No. 201306370037. Carlos M. Fonseca was supported by national funds through the Portuguese Foundation for Science and Technology (FCT), and by the European Regional Development Fund (FEDER) through COMPETE 2020 – Operational Program for Competitiveness and Internationalization (POCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifeng Yang .

Editor information

Editors and Affiliations

Appendix

Appendix

Definition 4

( \({\varPsi _{\infty }}\) function (see also [14])). Let \(\phi (s)= 1/\sqrt{2\pi }e^{-\frac{1}{2}s^2} (s\in \mathbb {R})\) denote the probability density function (PDF) of the standard normal distribution. Moreover, let \(\varPhi (s)= \frac{1}{2}\left( 1 + \text {erf}\left( \frac{s}{\sqrt{2}}\right) \right) \) denote its cumulative probability distribution function (CDF), and \(\text {erf}\) is Gaussian error function. The general normal distribution with mean \(\mu \) and standard deviation \(\sigma \) has as PDF, \(\xi _{\mu ,\sigma }(s)=\phi _{\mu , \sigma }(s) = \frac{1}{\sigma }\phi (\frac{s-\mu }{\sigma })\) and its CDF is \(\varPhi _{\mu , \sigma }(s) = \varPhi (\frac{s-\mu }{\sigma })\). Then the function \(\varPsi _{\infty }(a,b,\mu ,\sigma )\) is defined as:

$$\begin{aligned} \varPsi _{\infty }(a,b,\mu ,\sigma )&= \mathop {\int }_{b}^{\infty }(z-a)\dfrac{1}{\sigma }\phi \left( \dfrac{z-\mu }{\sigma }\right) dz \\&=\sigma \phi \left( \dfrac{b-\mu }{\sigma }\right) + (\mu -a)\left[ 1-\varPhi \left( \dfrac{b-\mu }{\sigma }\right) \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, K., Emmerich, M., Deutz, A., Fonseca, C.M. (2017). Computing 3-D Expected Hypervolume Improvement and Related Integrals in Asymptotically Optimal Time. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics