Skip to main content

Walking Membranes: Grid-Exploring P Systems with Artificial Evolution for Multi-purpose Topological Optimisation of Cascaded Processes

  • Conference paper
  • First Online:
Membrane Computing (CMC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10105))

Included in the following conference series:

Abstract

The capability of self-organisation belongs to the most fascinating features of many living organisms. It results in formation and continuous adjustment of dedicated spatial structures which in turn can sustain a high fitness and efficient use of resources even if environmental conditions or internal factors tend to vary. Spatial structures in this context might for instance incorporate topological arrangements of cellular compartments and filaments towards fast and effective signal transduction. Due to its discrete nature, the P systems approach represents an ideal candidate in order to capture emergence and evolution of topologies composed of membranes passable by molecular particles. We introduce grid-exploring P systems in which generalised membranes form the grid elements keeping the grid structure variable. Particles initially placed at different positions of the grid’s boundary individually run through the grid visiting a sequence of designated membranes in which they become successively processed. Using artificial evolution, the arrangement of membranes within the grid becomes optimised for shortening the total time duration necessary for complete passage and processing of all particles. Interestingly, the corresponding framework comprises numerous practical applications beyond modelling of biological self-organisation. When replacing membranes by queue-based treads, tools, or processing units and particles by customers, workpieces, or raw products, we obtain a multi-purpose optimisation strategy along with a simulation framework. Three case studies from cell signalling, retail industry, and manufacturing demonstrate various benefits from the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagchi, S.: Self-adaptive and reconfigurable distributed computing systems. Appl. Soft Comput. 12, 3023–3033 (2012)

    Article  Google Scholar 

  2. Bernardini, F., Gheorghe, M., Krasnogor, N., Giavitto, J.-L.: On self-assembly in population P systems. In: Calude, C.S., Dinneen, M.J., Păun, G., PĂ©rez-JĂ­menez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 46–57. Springer, Heidelberg (2005). doi:10.1007/11560319_6

    Chapter  Google Scholar 

  3. Buhl, J., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Self-organized digging activity in ant colonies. Behav. Ecol. Sociobiol. 58, 9–17 (2005)

    Article  Google Scholar 

  4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  5. Du, K.L., Swamy, M.N.S.: Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  6. Fangwei, Z., Huang, J., Meagher, M.: The introduction and design of a new form of supermarket: smart market. In: Information Engineering and Electronic Commerce (IEEC 2009), pp. 608–611. IEEE Press (2009)

    Google Scholar 

  7. Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics. Springer, Berlin (2010)

    MATH  Google Scholar 

  8. Gheorghe, M., Păun, G.: Computing by self-assembly: DNA molecules, polyominoes, cells. Syst. Self-Assemb.: Multidiscipl. Snapshots Stud. Multidiscipl. 5, 49–78 (2008). Elsevier

    Google Scholar 

  9. Hancock, J.T.: Cell Signalling. Oxford University Press, Oxford (2010)

    Google Scholar 

  10. Hinze, T., GrĂ¼tzmann, K., Höckner, B., Sauer, P., Hayat, S.: Categorised counting mediated by blotting membrane systems for particle-based data mining and numerical algorithms. In: Gheorghe, M., Rozenberg, G., Salomaa, A., SosĂ­k, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 241–257. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14370-5_15

    Google Scholar 

  11. Hinze, T., Behre, J., Bodenstein, C., Escuela, G., GrĂ¼nert, G., Hofstedt, P., Sauer, P., Hayat, S., Dittrich, P.: Membrane systems and tools combining dynamical structures with reaction kinetics for applications in chronobiology. In: Frisco, P., Gheorghe, M., Perez-Jimenez, M.J. (eds.) Applications of Membrane Computing in Systems and Synthetic Biology. Emergence, Complexity, and Computation, vol. 7, pp. 133–173. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Hinze, T., Kirkici, K., Sauer, P., Sauer, P., Behre, J.: Membrane computing meets temperature: a thermoreceptor model as molecular slide rule with evolutionary potential. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 215–235. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28475-0_15

    Chapter  Google Scholar 

  13. Ivanov, D., Dolgui, A., Sokolov, B., Werner, F., Ivanova, M.: A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. Int. J. Prod. Res. 54(2), 386–402 (2016)

    Article  Google Scholar 

  14. Kholodenko, B.N.: Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006)

    Article  Google Scholar 

  15. Kurz, H., Sandau, K., Wilting, J., Christ, B., Growth, B.V.: Mathematical analysis and computer simulation, fractality, and optimality. In: Little, C.D., et al. (eds.) Vascular Morphogenesis. Birkhäuser, Boston (1998)

    Google Scholar 

  16. Martin-Vide, C., Păun, G., Pazos, J., Rodriguez-Paton, A.: Tissue P systems. Theoret. Comput. Sci. 296, 295–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2007). Elsevier

    Article  Google Scholar 

  18. Miller, P.: The Smart Swarm. Avery Publishing Group, New York (2010)

    Google Scholar 

  19. Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  20. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990)

    Book  MATH  Google Scholar 

  21. Reichold, J., Stampanoni, M., Keller, A.L., Buck, A., Jenny, P., Weber, B.: Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29, 1429–1443 (2009)

    Article  Google Scholar 

  22. Reisig, W.: Petri nets and algebraic specifications. Theoret. Comput. Sci. 80(1), 1–34 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rivron, N.C., Rouwkema, J., TruckenmĂ¼ller, R., Karperien, M., de Boer, J., van Blitterswijk, A.: Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials 30, 4851–4858 (2009)

    Article  Google Scholar 

  24. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer, Berlin (2012)

    MATH  Google Scholar 

  25. Ruan, F., Chen, D.: Based on RFID and NFC technology retail chain supermarket mobile checkout mode research. In: The International Conference on Artificial Intelligence and Software Engineering (ICAISE ). Atlantis Press (2013)

    Google Scholar 

  26. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)

    Google Scholar 

  27. Stamatopoulou, I., Kefalas, P., Gheorghe, M.: \(OPERAS_{CC}\): an instance of a formal framework for MAS modeling based on population P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 438–452. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77312-2_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hinze, T., Weber, L.L., Hatnik, U. (2017). Walking Membranes: Grid-Exploring P Systems with Artificial Evolution for Multi-purpose Topological Optimisation of Cascaded Processes. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2016. Lecture Notes in Computer Science(), vol 10105. Springer, Cham. https://doi.org/10.1007/978-3-319-54072-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54072-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54071-9

  • Online ISBN: 978-3-319-54072-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics