Skip to main content

Specific Rain Attenuation Derived from a Gaussian Mixture Model for Rainfall Drop Size Distribution

  • Conference paper
  • First Online:
Wireless and Satellite Systems (WiSATS 2016)

Abstract

Precipitation, particularly rain affects the millimetre and sub-millimetre frequencies more severely than it does for lower frequencies in the Earth-space path. There is therefore a need for accurate models that will enable the rainfall drop size distribution (DSD) to be better predicted for better planning and improved service delivery. Using data captured at Chilbolton Observatory, this paper looks at modelling the DSD using the Gaussian Mixture Model (GMM), and attempts to predict the specific attenuation due to rain based on this model and compares the result with other well-established statistical models (lognormal and gamma). Results show that specific attenuation tends to increase with the drop sizes, and the smaller drops contribute little to the overall attenuation experienced by signals. Specific attenuation was computed based on several standard statistical distributions, and compared with that derived from the ITU recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, L.S., Lee, Y.H., Ong, J.T.: Truncated gamma drop size distribution models for rain attenuation in Singapore. IEEE Trans. Antennas Propag. 58(4), 1325–1335 (2010)

    Article  Google Scholar 

  2. Thurai, M., Bringi, V.N., Shimomai, T.: 20 GHz Specific attenuation calculations using drop size distributions and drop shape measurements from 2D video disdrometer data in different rain climates. In: 6th International Conference on Information, Communications & Signal Processing. IEEE, Singapore (2007)

    Google Scholar 

  3. Åsen, W., Gibbins, C.J.: A comparison of rain attenuation and drop size distributions measured in Chilbolton and Singapore. Radio Sci. 37(3), 6-1–6-15 (2002)

    Article  Google Scholar 

  4. Ekerete, K.-M.E., Hunt, F.H., Otung, I.E., Jeffery, J.L.: Multimodality in the rainfall drop size distribution in southern England. In: Pillai, P., Hu, Y.F., Otung, I., Giambene, G. (eds.) WiSATS 2015. LNICSSITE, vol. 154, pp. 177–184. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25479-1_13

    Chapter  Google Scholar 

  5. Ekerete, K.E., et al.: Experimental study and modelling of rain drop size distribution in southern England. In: IET Colloquium on Antennas, Wireless and Electromagnetics, London (2014)

    Google Scholar 

  6. Ekerete, K.E., et al.: Variation of multimodality in rainfall drop size distribution with wind speeds and rain rates. J. Eng. (2016)

    Google Scholar 

  7. Ekerete, K.E., et al.: Modeling rainfall drop size distribution in southern England using a Gaussian Mixture Model. Radio Sci. (2015)

    Google Scholar 

  8. Marshall, J.S., Palmer, W.M.K.: The distribution of raindrops with size. J. Meteorol. 5(4), 165–166 (1948)

    Article  Google Scholar 

  9. Levin, L.M.: The distribution function of cloud and rain drops by sizes. Dokl. Akad. Nauk SSSR 94(6), 1045–1048 (1954)

    Google Scholar 

  10. Markowitz, A.H.: Raindrop size distribution expressions. J. Appl. Meteorol. 15(9), 1029–1031 (1976)

    Article  Google Scholar 

  11. Feingold, G., Levin, Z.: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Appl. Meteorol. 25(10), 1346–1363 (1986)

    Article  Google Scholar 

  12. Owolawi, P.: Raindrop size distribution model for the prediction of rain attenuation in Durban. PIERS Online 7(6), 516–523 (2011)

    Google Scholar 

  13. Ulbrich, C.W., Atlas, D.: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci. 19(1), 49–57 (1984)

    Article  Google Scholar 

  14. Adimula, I.A., Ajayi, G.O.: Variations in raindrop size distribution and specific attenuation due to rain in Nigeria. Ann. Telecommun. 51(1–2), 87–93 (1996)

    Google Scholar 

  15. Maitra, A., Chakravarty, K.: Raindrop size distribution measurements and associated rain parameters at a tropical location in the Indian region (2005)

    Google Scholar 

  16. Ajayi, G.O., Olsen, R.L.: Modeling of a tropical raindrop size distribution for microwave and millimetre wave applications. Radio Sci. 20(2), 193–202 (1985)

    Article  Google Scholar 

  17. Maciel, L.R., Assis, M.S.: Tropical rainfall drop-size distribution. Int. J. Satell. Commun. 8, 181–186 (1990)

    Article  Google Scholar 

  18. McFarquhar, G.M.: Raindrop size distribution and evolution. In: Rainfall: State of the Science, Geophysical Monograph Series, vol. 191, pp. 49–60 (2010)

    Google Scholar 

  19. Radhakrishna, B., Rao, T.N.: Multipeak raindrop size distribution observed by UHF/VHF wind profilers during the passage of a mesoscale convective system. Mon. Weather Rev. 137(3), 976–990 (2009)

    Article  Google Scholar 

  20. Sauvageot, H., Koffi, M.: Multimodal raindrop size distribution. J. Atmos. Sci. 57, 2480–2492 (2000)

    Article  Google Scholar 

  21. Olsen, R.L., Rogers, D.V., Hodge, D.B.: The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propag. AP-26(2), 318–329 (1978)

    Article  Google Scholar 

  22. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908)

    Article  MATH  Google Scholar 

  23. Ippolito, L.J.: Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance. Wiley, Washington, DC (2008)

    Google Scholar 

  24. ITU-R: R-REC-P.838-3 - Specific attenuation model for rain for use in prediction methods (2005)

    Google Scholar 

  25. Mishchenko, M.I., et al.: On definition and measurement of extinction cross section. J. Quant. Spectrosc. Radiat. Transfer 110, 323–327 (2009)

    Article  Google Scholar 

  26. van de Hulst, H.C.: Light Scattering by Small Particles. Wiley, New York (1957)

    Google Scholar 

  27. Ulbrich, C.W.: Natural variations in the analytical form of the raindrop size distribution. J. Clim. Appl. Meteorol. 22, 1764–1775 (1983)

    Article  Google Scholar 

  28. Odedina, M.O., Afullo, T.J.: Determination of rain attenuation from electromagnetic scattering by spherical raindrops: theory and experiment. Radio Sci. 45(1) (2010)

    Google Scholar 

  29. Distromet: Disdrometer RD-80, D. Ltd, Editor, Switzerland (2002)

    Google Scholar 

  30. Atas, D., Srivastava, R.C., Sekhon, R.S.: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys. 11, 1–35 (1973)

    Article  Google Scholar 

  31. Montopoli, M., et al., Statistical characterization and modeling of raindrop spectra time series for different climatological regions. IEEE Trans. Geosci. Remote Sens. 46(10) (2008)

    Google Scholar 

  32. Townsend, A.J., Watson, R.J.: The linear relationship between attenuation and average rainfall rate for terrestrial links. IEEE Trans. Antennas Propag. 59(3), 994–1002 (2011)

    Article  Google Scholar 

  33. Islam, T., et al.: Characteristics of raindrop spectra as normalized gamma distribution from a Joss-Waldvogel disdrometer. Atmos. Res. 108, 57–73 (2012)

    Article  Google Scholar 

  34. Thurai, M., et al.: Towards completing the rain drop size distribution spectrum: a case study involving 2D video disdrometer, droplet spectrometer, and polarimetic radar measurements in Greely, Colorado. In: AMS Conference on Radar Meteorology, Norman, Oklahoma, USA (2015)

    Google Scholar 

  35. Tokay, A., Kruger, A., Krajewski, W.F.: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteorol. 40, 2083–2097 (2001)

    Article  Google Scholar 

  36. McFarquhar, G.M., List, R.: The effect of curve fits for the disdrometer calibration on raindrop spectra, rainfall rate, and radar reflectivity. J. Appl. Meteorol. 32, 774–782 (1993)

    Article  Google Scholar 

  37. Mätzler, C.: MATLAB Functions for Mie Scattering and Absorption. Institut für Angewandte Physik (2002)

    Google Scholar 

  38. Segelstein, D.: The Complex Refractive Index of Water, University of Missouri, Kansas City, USA (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis H. Hunt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Ekerete, KM.E., Hunt, F.H., Jeffery, J.L., Otung, I.E. (2017). Specific Rain Attenuation Derived from a Gaussian Mixture Model for Rainfall Drop Size Distribution. In: Otung, I., Pillai, P., Eleftherakis, G., Giambene, G. (eds) Wireless and Satellite Systems. WiSATS 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-319-53850-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53850-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53849-5

  • Online ISBN: 978-3-319-53850-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics