Skip to main content

Historical Perspectives of the Global Carbon Cycle

  • Chapter
  • First Online:
Carbon Sequestration for Climate Change Mitigation and Adaptation
  • 2621 Accesses

Abstract

Quantifying atmospheric carbon dioxide (CO2) concentration and carbon (C) cycling during Earth’s ancient greenhouse episodes is essential for accurately interpreting current global climate and predicting the future climate due to elevated CO2 concentrations associated with increased anthropogenic CO2 concentration. While the trends in atmospheric CO2 concentration and global C cycling in recent decades are clear, its significance is only revealed when viewed in the context of geological timescales. Beyond the direct instrumental record, air bubbles trapped in ice cores has provided concentrations of greenhouse gases (GHGs) and reveal that the atmospheric CO2 concentration was 278 ± 2 ppmv at the onset of the Industrial Revolution in 1750. Ice core covering a period of the past 800,000 years, which incorporates the past eight glacial/interglacial cycles have been extracted and characterized. During the glacial/interglacial period, the atmospheric CO2 concentration oscillated between 170 and 200 ppmv during glacial periods and 240–290 ppmv during interglacial periods, revealing coupling of the global temperature and atmospheric CO2 concentration. It is broadly accepted that changes in atmospheric CO2 concentration constitutes a feedback rather than the primary cause of climate variation observed during the glacial-interglacial cycles, however. The drivers and mechanisms controlling the onset of and variations in atmospheric CO2 concentration during glacial/interglacial are highly debated, but it is broadly accepted that the succession of glacial/interglacial cycles are driven by the shape of Earth’s orbit and tilt of its spin axis termed as Milankovitch cycles . However, the exact mechanisms on how these cycles initiate or terminate glacial cycle is still not known. The C cycling processes and the associated changes in climatic factor acts as feedback mechanisms. During the interval of global warming from the last glacial maximum to early Holocene, climate system underwent large-scale changes, including decay of ice sheets which caused the sea level rise, estimated at 80–120 m and net release of CO2 to the atmosphere, which increased the atmospheric concentration to 265 ppmv at early Holocene. An increase of 20 ppm is observed during Holocene, which is generally attributed to decomposition of deep-sea organic matter (OM). The C cycling and atmospheric CO2 concentration for geologic timescale beyond the ice core record is normally reconstructed from geological proxies and geochemical models. On a multimillion-year timescale the long-term or geochemical C cycle involves slow exchange of C between the rocks (i.e., lithosphere) and the surface reservoirs consisting of the atmosphere, the ocean, the biota and soils. The processes affecting the atmospheric CO2 concentration are the uptake of atmospheric CO2 during silicate minerals, transport, precipitation and burial of carbonates as limestone as well as burial of organic matter (OM), thereby removing CO2 from the atmosphere. Degassing of CO2 from rocks and buried OM on the other hand return CO2 back to the atmosphere. Geologic records show evidence of coupling of climate and C cycling during Phanerozoic. The atmospheric CO2 concentration was low (<500 ppm) during the periods of long-lived cooler continental temperatures, and widespread glaciation may have occurred during these times. In contrast, during warmer periods, the CO2 concentration was high (>1000 ppm). These records, are highly correlated with the atmospheric CO2 predicted from geochemical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn J, Brook EJ (2008) Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 322(5898):83–85. doi:10.1126/science.1160832

    Article  CAS  Google Scholar 

  • Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen HB, DahlJensen D, Fischer H, Fluckiger J, Fritzsche D, Fujii Y, Goto-Azuma K, Gronvold K, Gundestrup NS, Hansson M, Huber C, Hvidberg CS, Johnsen SJ, Jonsell U, Jouzel J, Kipfstuhl S, Landais A, Leuenberger M, Lorrain R, Masson-Delmotte V, Miller H, Motoyama H, Narita H, Popp T, Rasmussen SO, Raynaud D, Rothlisberger R, Ruth U, Samyn D, Schwander J, Shoji H, Siggard-Andersen ML, Steffensen JP, Stocker T, Sveinbjornsdottir AE, Svensson A, Takata M, Tison JL, Thorsteinsson T, Watanabe O, Wilhelms F, White JWC, Project NGIC (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151

    Google Scholar 

  • Anderson RF, Fleisher MQ, Lao Y, Winckler G (2008) Modern CaCO3 preservation in equatorial Pacific sediments in the context of late-pleistocene glacial cycles. Mar Chem 111(1–2):30–46. doi:10.1016/j.marchem.2007.11.011

    Article  CAS  Google Scholar 

  • Anklin M, Barnola JM, Schwander J, Stauffer B, Raynaud D (1995) Processes affecting the CO2 concentrations measured in Greenland ice. Tellus B 47(4):461–470. doi:10.1034/j.1600-0889.47.issue4.6.x

    Article  Google Scholar 

  • Archer D, Winguth A, Lea D, Mahowald N (2000) What caused the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys 38(2):159–189. doi:10.1029/1999rg000066

    Article  CAS  Google Scholar 

  • Ashkenazy Y, Tziperman E (2004) Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing? Quat Sci Rev 23(18–19):1879–1890. doi:10.1016/j.quascirev.2004.04.008

    Article  Google Scholar 

  • Augustin L, Barbante C, Barnes PRF, Barnola JM, Bigler M, Castellano E, Cattani O, Chappellaz J, DahlJensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Fluckiger J, Hansson ME, Huybrechts P, Jugie R, Johnsen SJ, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov VY, Littot GVC, Longinelli A, Lorrain R, Maggi V, Masson-Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel DA, Petit JR, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tabacco IE, Udisti R, van de Wal RSW, van den Broeke M, Weiss J, Wilhelms F, Winther JG, Wolff EW, Zucchelli M, Members EC (2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–628. doi:10.1038/nature02599

    Article  CAS  Google Scholar 

  • Backman J, Moran K (2009) Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP expedition 302 synthesis. Cent Eur J Geosci 1(2):157–175. doi:10.2478/v10085-009-0015-6

    Google Scholar 

  • Badger MPS, Schmidt DN, Mackensen A, Pancost RD (2013) High-resolution alkenone palaeobarometry indicates relatively stable pCO 2 during the pliocene (3.3-2.8 Ma). Philos Trans R Soc Series A 371 (2001). doi:10.1098/rsta.2013.0094

  • Bartoli G, Sarnthein M, Weinelt M, Erlenkeuser H, Garbe-Schonberg D, Lea DW (2005) Final closure of Panama and the onset of northern hemisphere glaciation. Earth Planet Sci Lett 237(1–2):33–44. doi:10.1016/j.epsl.2005.06.020

    Article  CAS  Google Scholar 

  • Bartoli G, Hoenisch B, Zeebe RE (2011) Atmospheric CO2 decline during the pliocene intensification of northern hemisphere glaciations. Paleoceanography 26. doi:10.1029/2010pa002055

  • Beerling DJ, Royer DL (2002) Fossil plants as indicators of the phanerozoic global carbon cycle. Annu Rev Earth Planet Sci 30:527–556. doi:10.1146/annurev.earth.30.091201.141413

    Article  CAS  Google Scholar 

  • Beerling DJ, Royer DL (2011) Convergent cenozoic CO2 history. Nat Geosci 4(7):418–420. doi:10.1038/ngeo1186

    Article  CAS  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the cretaceous-tertiary boundary from leaf megafossils. Proc Natl Acad Sci U S A 99(12):7836–7840. doi:10.1073/pnas.122573099

    Article  CAS  Google Scholar 

  • Beerling DJ, Fox A, Anderson CW (2009) Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves. Am J Sci 309(9):775–787. doi:10.2475/09.2009.01

    Article  CAS  Google Scholar 

  • Bender MI, Battle MO (1999) Carbon cycle studies based on the distribution of O2 in air. Tellus B 51(2):165–169. doi:10.1034/j.1600-0889.1999.t01-1-00004.x

    Article  Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367

    Article  Google Scholar 

  • Berger WH (2013) On the Milankovitch sensitivity of the quaternary deep-sea record. Clim Past 9(4):2003–2011. doi:10.5194/cp-9-2003-2013

    Article  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10(4):297–317. doi:10.1016/0277-3791(91)90033-Q

    Article  Google Scholar 

  • Berger A, Loutre MF, Gallee H (1998) Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky. Clim Dynam 14(9):615–629. doi:10.1007/s003820050245

    Article  Google Scholar 

  • Berndt C, Feseker T, Treude T, Krastel S, Liebetrau V, Niemann H, Bertics VJ, Dumke I, Duennbier K, Ferre B, Graves C, Gross F, Hissmann K, Huehnerbach V, Krause S, Lieser K, Schauer J, Steinle L (2014) Temporal Constraints on hydrate-controlled methane seepage off svalbard. Science 343(6168):284–287. doi:10.1126/science.1246298

    Article  CAS  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci 282(4):451–473

    Article  CAS  Google Scholar 

  • Berner RA (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time. Glob Planet Change 75(1–2):97–122

    Article  Google Scholar 

  • Berner RA (1998) The carbon cycle and CO2 over phanerozoic time: the role of land plants. Philos Trans R Soc Lond Ser A 353(1365):75–81. doi:10.1098/rstb.1998.0192

    Article  Google Scholar 

  • Berner RA (1999) A new look at the long-term carbon cycle. GSA Today 9:1–6

    Google Scholar 

  • Berner RA (2001) Modeling atmospheric O2 over phanerozoic time. Geochim Cosmochim Acta 65(5):685–694. doi:10.1016/s0016-7037(00)00572-x

    Article  CAS  Google Scholar 

  • Berner RA (2004) The phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New York

    Google Scholar 

  • Berner EK, Berner RA (1996) Global environment water, air, and geochemical cycles. Prentice Hall, Upper Saddle River, New Jersey, p 376

    Google Scholar 

  • Berner RA, Caldeira K (1997) The need for mass balance and feedback in the geochemical carbon cycle. Geology 25(10):955–956. doi:10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2

    Article  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over phanerozoic time. Am J Sci 301(2):182–204. doi:10.2475/ajs.301.2.182

    Article  CAS  Google Scholar 

  • Berner W, Oeschger H, Stauffer B (1980) Information on the CO2 cycle from ice core studies. Radiocarbon 22(2):227–235

    Article  CAS  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effects on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283(7):641–683

    Article  CAS  Google Scholar 

  • Biastoch A, Treude T, Ruepke LH, Riebesell U, Roth C, Burwicz EB, Park W, Latif M, Boening CW, Madec G, Wallmann K (2011) Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys Res Lett 38. doi:10.1029/2011gl047222

  • Bijl PK, Houben AJP, Schouten S, Bohaty SM, Sluijs A, Reichart G-J, Damste JSS, Brinkhuis H (2010) Transient middle eocene atmospheric CO2 and temperature variations. Science 330(6005):819–821. doi:10.1126/science.1193654

    Article  CAS  Google Scholar 

  • Bird MI, Lloyd J, Farquhar D (1996) Terrestrial carbon-storage from the last glacial maximum to the present. Chemosphere 33(9):1675–1685. doi:10.1016/0045-6535(96)00187-7

    Article  CAS  Google Scholar 

  • Bopp L, Kohfeld KE, Le Quere C, Aumont O (2003) Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18(2). doi:10.1029/2002pa000810

  • Bowen GJ, Zachos JC (2010) Rapid carbon sequestration at the termination of the palaeocene-eocene thermal maximum. Nat Geosci 3(12):866–869. doi:10.1038/ngeo1014

    Article  CAS  Google Scholar 

  • Bowen GJ, Clyde WC, Koch PL, Ting SY, Alroy J, Tsubamoto T, Wang YQ, Wang Y (2002) Mammalian dispersal at the paleocene/eocene boundary. Science 295(5562):2062–2065. doi:10.1126/science.1068700

    Article  CAS  Google Scholar 

  • Bowen GJ, Beerling DJ, Koch PL, Zachos JC, Quattlebaum T (2004) A humid climate state during the palaeocene/eocene thermal maximum. Nature 432(7016):495–499. doi:10.1038/nature03115

    Article  CAS  Google Scholar 

  • Bowen GJ, Maibauer BJ, Kraus MJ, Roehl U, Westerhold T, Steimke A, Gingerich PD, Wing SL, Clyde WC (2015) Two massive, rapid releases of carbon during the onset of the palaeocene-eocene thermal maximum. Nat Geosci 8(1):44–47. doi:10.1038/ngeo2316

    Article  CAS  Google Scholar 

  • Bradshaw CD, Lunt DJ, Flecker R, Salzmann U, Pound MJ, Haywood AM, Eronen JT (2012) The relative roles of CO2 and palaeogeography in determining late miocene climate: results from a terrestrial model-data comparison. Clim Past 8(4):1257–1285. doi:10.5194/cp-8-1257-2012

    Article  Google Scholar 

  • Breecker DO, Sharp ZD, McFadden LD (2010) Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for AD 2100. Proc Natl Acad Sci U S A 107(2):576–580. doi:10.1073/pnas.0902323106

    Article  CAS  Google Scholar 

  • Brierley CM, Fedorov AV, Liu Z, Herbert TD, Lawrence KT, LaRiviere JP (2009) Greatly expanded tropical warm pool and weakened hadley circulation in the early pliocene. Science 323(5922):1714–1718. doi:10.1126/science.1167625

    Article  CAS  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285(5430):1033–1036. doi:10.1126/science.285.5430.1033

    Article  CAS  Google Scholar 

  • Broecker W, Barker S (2007) A 190% drop in atmosphere’s delta(14) C during the “Mystery interval” (17.5 to 14.5 kyr). Earth Planet Sci Lett 256(1–2):90–99. doi:10.1016/j.epsl.2007.01.015

    Article  CAS  Google Scholar 

  • Broecker WS, Stocker TF (2006) The holocene CO2 rise: anthropogenic or natural? EOS 87(3):27. doi:10.1029/2006eo030002

    Article  Google Scholar 

  • Broecker WS, Vandonk J (1970) Insolation changes, ice volumes, and 18O record in deep-sea cores. Rev Geophys Space Phys 8(1):169–198. doi:10.1029/RG008i001p00169

  • Brook E (2012) The ice age carbon puzzle. Science 336(6082):682–683. doi:10.1126/science.1219710

    Article  CAS  Google Scholar 

  • Burke A, Robinson LF (2012) The southern ocean’s role in carbon exchange during the last deglaciation. Science 335(6068):557–561. doi:10.1126/science.1208163

    Article  CAS  Google Scholar 

  • Carozza DA, Mysak LA, Schmidt GA (2011) Methane and environmental change during the paleocene-eocene thermal maximum (PETM): modeling the PETM onset as a two-stage event. Geophys Res Lett 38. doi:10.1029/2010gl046038

  • Castellano E, Becagli S, Hansson M, Hutterli M, Petit JR, Rampino MR, Severi M, Steffensen JP, Traversi R, Udisti R (2005) Holocene volcanic history as recorded in the sulfate stratigraphy of the European project for ice coring in Antarctica Dome C (EDC96) ice core. J Geophys Res Atmos 110(D6). doi:10.1029/2004jd005259

  • Cerling TE (1992) Use of carbon isotopes in paleosols as an indicator of the carbon dioxide partial pressure of the paleoatmosphere. Glob Biogeochem Cycles 6(3):307–314. doi:10.1029/92gb01102

    Article  CAS  Google Scholar 

  • Cerling TE (1999) Stable carbon isotopes in paleosol carbonates. Special Publication of the International Association of Sedimentologists 27:43–60

    CAS  Google Scholar 

  • Cheng H, Edwards RL, Broecker WS, Denton GH, Kong X, Wang Y, Zhang R, Wang X (2009) Ice Age Terminations. Science 326(5950):248–252. doi:10.1126/science.1177840

    Article  CAS  Google Scholar 

  • Ciais P, Tagliabue A, Cuntz M, Bopp L, Scholze M, Hoffmann G, Lourantou A, Harrison SP, Prentice IC, Kelley DI, Koven C, Piao SL (2012) Large inert carbon pool in the terrestrial biosphere during the last glacial maximum. Nat Geosci 5(1):74–79

    Article  CAS  Google Scholar 

  • Claquin T, Roelandt C, Kohfeld KE, Harrison SP, Tegen I, Prentice IC, Balkanski Y, Bergametti G, Hansson M, Mahowald N, Rodhe H, Schulz M (2003) Radiative forcing of climate by ice-age atmospheric dust. Clim Dynam 20(2–3):193–202. doi:10.1007/s00382-002-0269-1

    Google Scholar 

  • Clark PU, Alley RB, Pollard D (1999) Climatology—northern hemisphere ice-sheet influences on global climate change. Science 286(5442):1104–1111. doi:10.1126/science.286.5442.1104

    Article  CAS  Google Scholar 

  • Cramer BS, Miller KG, Barrett PJ, Wright JD (2011) Late cretaceous-neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (delta O-18 and Mg/Ca) with sea level history. J Geophys Res Oceans 116:C12023. doi:10.1029/2011jc007255

    Article  CAS  Google Scholar 

  • Crouch EM, Heilmann-Clausen C, Brinkhuis H, Morgans HEG, Rogers KM, Egger H, Schmitz B (2001) Global dinoflagellate event associated with the late paleocene thermal maximum. Geology 29(4):315–318. doi:10.1130/0091-7613(2001)029<0315:gdeawt>2.0.co;2

    Article  CAS  Google Scholar 

  • Crowley TJ (1996) Pliocene climates: the nature of the problem. Mar Micropaleontol 27(1–4):3–12. doi:10.1016/0377-8398(95)00049-6

    Article  Google Scholar 

  • Crowley TJ (1998) Significance of tectonic, boundary conditions for paleoclimate simulations. In: Crowley TJ, Burke K (eds) Tectonic boundary conditions for climate reconstruction. Oxford University Press, New York, pp 3–17

    Google Scholar 

  • Crowley TJ, Berner RA (2001) CO2 and climate change. Science 292(5518):870–872. doi:10.1126/science.1061664

    Article  CAS  Google Scholar 

  • Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf AF, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the palaeocene-eocene thermal maximum. Nat Geosci 4(7):481–485. doi:10.1038/ngeo1179

    Article  CAS  Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421(6920):245–249. doi:10.1038/nature01290

    Article  CAS  Google Scholar 

  • Dekens PS, Ravelo AC, McCarthy MD, Edwards CA (2008) A 5 million year comparison of Mg/Ca and alkenone paleothermometers. Geochem Geophys Geosyst 9. doi:10.1029/2007gc001931

  • Delmas RJ, Ascencio JM, Legrand M (1980) Polar ice evidence that atmospheric CO2 20,000-yr BP was 50-percent of present. Nature 284(5752):155–157. doi:10.1038/284155a0

    Article  CAS  Google Scholar 

  • Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the precambrian. In: Valley JW, Cole DR (eds) Stable Isotope Geochemistry, vol 43. Reviews in mineralogy & geochemistry, pp 555–578. doi:10.2138/gsrmg.43.1.555

  • Des Marais DJ, Strauss H, Summons RE, Hayes JM (1992) Carbon isotope evidence for the stepwise oxidation of the proterozoic environment. Nature 359(6396):605–609

    Article  CAS  Google Scholar 

  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213(3–4):169–183. doi:10.1016/s0012-821x(03)00325-x

    Article  CAS  Google Scholar 

  • Dickens GR, Oneil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the paleocene. Paleoceanography 10(6):965–971. doi:10.1029/95pa02087

    Article  Google Scholar 

  • Dolan AM, Haywood AM, Hill DJ, Dowsett HJ, Hunter SJ, Lunt DJ, Pickering SJ (2011) Sensitivity of pliocene ice sheets to orbital forcing. Paleogeogr Paleoclimatol Paleoecol 309(1–2):98–110. doi:10.1016/j.palaeo.2011.03.030

    Article  Google Scholar 

  • Dowsett HJ (2007) The PRISM paleoclimate reconstruction and pliocene sea-surface temperature. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. Geological Society Publishing House, Bath, UK, pp 459–480

    Google Scholar 

  • Edwards EJ, Osborne CP, Stroemberg CAE, Smith SA, Bond WJ, Christin P-A, Cousins AB, Duvall, Fox DL, Freckleton RP, Ghannoum O, Hartwell J, Huang Y, Janis CM, Keeley JE, Kellogg EA, Knapp AK, Leakey ADB, Nelson DM, Saarela JM, Sage RF, Sala OE, Salamin N, Still CJ, Tipple B, Consortium CG (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328(5978):587–591. doi:10.1126/science.1177216

    Article  CAS  Google Scholar 

  • Ekart DD, Cerling TE, Montanez IP, Tabor NJ (1999) A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am J Sci 299(10):805–827. doi:10.2475/ajs.299.10.805

    Article  CAS  Google Scholar 

  • Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Joos F, Fischer H, Stocker TF (2009) Stable isotope constraints on holocene carbon cycle changes from an Antarctic ice core. Nature 461(7263):507–510. doi:10.1038/nature08393

    Article  CAS  Google Scholar 

  • Etheridge D, Steele L, Langenfelds R, Francey R, Barnola JM, Morgan V (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res-Atmos 101(D2):4115–4128

    Article  CAS  Google Scholar 

  • Fang XM, Yan MD, Van der Voo R, Rea DK, Song CH, Pares JM, Gao JP, Nie JS, Dai S (2005) Late Cenozoic deformation and uplift of the NE Tibetan plateau: evidence from high-resolution magneto stratigraphy of the Guide Basin, Qinghai Province. China Geol Soc Am Bull 117(9–10):1208–1225. doi:10.1130/b25727.1

    Article  Google Scholar 

  • Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, deMenocal PB, Barreiro M, Pacanowski RC, Philander SG (2006) The pliocene paradox (mechanisms for a permanent El Nino). Science 312(5779):1485–1489. doi:10.1126/science.1122666

    Article  CAS  Google Scholar 

  • Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC (2013) Patterns and mechanisms of early pliocene warmth. Nature 496(7443):43–49. doi:10.1038/nature12003

    Article  CAS  Google Scholar 

  • Fischer AG (1984) The two phanerozoic supercycles. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history: the new uniformitarianism. Princeton University Press, Princeton, N.J., pp 129–150

    Google Scholar 

  • Fischer H, Wahlen M, Smith J, Mastroianni D, Deck B (1999) Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283(5408):1712–1714. doi:10.1126/science.283.5408.1712

    Article  CAS  Google Scholar 

  • Flückiger J, Monnin E, Stauffer B, Schwander J, Stocker TF, Chappellaz J, Raynaud D, Barnola JM (2002) High-resolution holocene N2O ice core record and its relationship with CH4 and CO2. Glob Biogeochem Cycles 16(1). doi:10.1029/2001gb001417

  • Foster GL, Lear CH, Rae JWB (2012) The evolution of pCO2, ice volume and climate during the middle miocene. Earth Planet Sci Lett 341:243–254. doi:10.1016/j.epsl.2012.06.007

    Article  CAS  Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390(6655):65–67. doi:10.1038/36324

    Article  CAS  Google Scholar 

  • Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51(2):170–193. doi:10.1034/j.1600-0889.1999.t01-1-00005.x

    Article  Google Scholar 

  • Francis JE, Marenssi S, Levy R, Hambrey M, Thorn VC, Mohr B, Brinkhuis H, Warnaar J, Zachos J, Bohaty S, De Conto R (2008) From greenhouse to icehouse—the eocene/oligocene in Antarctica. In: Florindo F, Siegert MJ (eds) Antarctic climate evolution. Developments in earth and environmental sciences, vol. 8. Elsevier, pp 309–368

    Google Scholar 

  • Friedli H, Lotscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past 2 centuries. Nature 324(6094):237–238. doi:10.1038/324237a0

    Article  CAS  Google Scholar 

  • Friedlingstein P, Dufresne JL, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus B 55(2):692–700. doi:10.1034/j.1600-0889.2003.01461.x

    Article  Google Scholar 

  • Ganopolski A, Calov R (2011) The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles. Clim Past 7(4):1415–1425. doi:10.5194/cp-7-1415-2011

    Article  Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A (2008) Rise of the Andes. Science 320(5881):1304–1307. doi:10.1126/science.1148615

    Article  CAS  Google Scholar 

  • Genthon C, Barnola JM, Raynaud D, Lorius C, Jouzel J, Barkov NI, Korotkevich YS, Kotlyakov VM (1987) Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329(6138):414–418

    Article  CAS  Google Scholar 

  • Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci 2:217–231. doi:10.2174/1874282300802010217

    Article  CAS  Google Scholar 

  • Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393(6686):673–676. doi:10.1038/31447

    Article  CAS  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in earth’s orbit: pacemaker of ice ages. Science 194(4270):1121–1132. doi:10.1126/science.194.4270.1121

    Article  CAS  Google Scholar 

  • Haywood AM, Valdes PJ, Sellwood BW and Kaplan JO (2002) Antarctic climate during the middle Pliocene: model sensitivity to ice sheet variation. Paleogeogr Paleoclimatol  Paleoecol 182:93–115

    Google Scholar 

  • Haywood AM, Valdes PJ (2004) Modelling pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth Planet Sci Lett 218(3–4):363–377. doi:10.1016/s0012-821x(03)00685-x

    Article  CAS  Google Scholar 

  • Haywood AM, Dekens P, Ravelo AC, Williams M (2005) Warmer tropics during the mid-Pliocene? Evidence from alkenone paleothermometry and a fully coupled ocean-atmosphere GCM. Geochem Geophys Geosyst 6. doi:10.1029/2004gc000799

  • Hilting AK, Kump LR, Bralower TJ (2008) Variations in the oceanic vertical carbon isotope gradient and their implications for the paleocene-eocene biological pump. Paleoceanography 23(3). doi:10.1029/2007pa001458

  • Hodell DA and Channell JE (2016) Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate. Clim Past 12:1805. doi:10.5194/cp-12-1805-2016

  • Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on miocene ice-sheet expansion. Nature 438(7067):483–487. doi:10.1038/nature04123

    Article  CAS  Google Scholar 

  • Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66(21):3811–3826. doi:10.1016/s0016-7037(02)00950-x

    Article  CAS  Google Scholar 

  • Holland HD (2005) 100th anniversary special paper: sedimentary mineral deposits and the evolution of earth’s near-surface environments. Econ Geol 100(8):1489–1509. doi:10.2113/100.8.1489

    Article  CAS  Google Scholar 

  • Holland HD, Zimmerman H (2000) The dolomite problem revisited. Int Geol Rev 42(6):481–490

    Article  Google Scholar 

  • Hönisch B, Hemming NG, Archer D, Siddall M, McManus JF (2009) Atmospheric arbon dioxide concentration across the mid-pleistocene transition. Science 324(5934):1551–1554. doi:10.1126/science.1171477

    Article  CAS  Google Scholar 

  • Houben AJP, Bijl PK, Pross J, Bohaty SM, Passchier S, Stickley CE, Roehl U, Sugisaki S, Tauxe L, van de Flierdt T, Olney M, Sangiorgi F, Sluijs A, Escutia C, Brinkhuis H, Scientists E (2013) Reorganization of southern ocean plankton ecosystem at the onset of Antarctic glaciation. Science 340(6130):341–344. doi:10.1126/science.1223646

    Article  CAS  Google Scholar 

  • Huber M, Caballero R (2011) The early eocene equable climate problem revisited. Clim Past 7(2):603–633. doi:10.5194/cp-7-603-2011

    Article  Google Scholar 

  • Huybers P (2006) Early pleistocene glacial cycles and the integrated summer insolation forcing. Science 313(5786):508–511. doi:10.1126/science.1125249

    Article  CAS  Google Scholar 

  • Huybers P (2011) Combined obliquity and precession pacing of late pleistocene deglaciations. Nature 480(7376):229–232. doi:10.1038/nature10626

    Article  CAS  Google Scholar 

  • Imbrie J, Imbrie JZ (1980) Modeling the climatic response to orbital variations. Science 207(4434):943–953. doi:10.1126/science.207.4434.943

    Article  CAS  Google Scholar 

  • Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles 1. Linear responses to Milankovitch forcing. Paleoceanography 7(6):701–738. doi:10.1029/92pa02253

    Article  Google Scholar 

  • Imbrie J, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography 8(6):699–735. doi:10.1029/93pa02751

    Article  Google Scholar 

  • Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–126

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 151 pp

    Google Scholar 

  • Jansen E, Fronval T, Rack F, Channell JET (2000) Pliocene-pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography 15(6):709–721. doi:10.1029/1999pa000435

    Article  Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interglacials recorded in a new Greenland ice core. Nature 359(6393):311–313. doi:10.1038/359311a0

    Article  Google Scholar 

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci U S A 105(5):1425–1430. doi:10.1073/pnas.0707386105

    Article  CAS  Google Scholar 

  • Joos F, Meyer R, Bruno M, Leuenberger M (1999) The variability in the carbon sinks as reconstructed for the last 1000 years. Geophys Res Lett 26(10):1437–1440. doi:10.1029/1999gl900250

    Article  CAS  Google Scholar 

  • Joos F, Gerber S, Prentice IC, Otto-Bliesner BL, Valdes PJ (2004) Transient simulations of holocene atmospheric carbon dioxide and terrestrial carbon since the last glacial maximum. Glob Biogeochem Cycles 18(2):GB2002. doi:10.1029/2003gb002156

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007a) EPICA Dome C ice core 800KYr deuterium data and temperature estimates. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007b) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796. doi:10.1126/science.1141038

    Article  CAS  Google Scholar 

  • Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK (2011) Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21(5):775–791. doi:10.1177/0959683610386983

    Article  Google Scholar 

  • Kashiwagi H, Shikazono N (2003) Climate change during cenozoic inferred from global carbon cycle model including igneous and hydrothermal activities. Paleogeogr Paleoclimatol Paleoecol 199(3–4):167–185. doi:10.1016/s0031-0182(03)00506-6

    Article  Google Scholar 

  • Kasting JF (2013) What caused the rise of atmospheric O2? Chem Geol 362:13–25. doi:10.1016/j.chemgeo.2013.05.039

    Article  CAS  Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the archean atmosphere. J Geol 101(2):245–257

    Article  CAS  Google Scholar 

  • Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J, Raymo ME, Matsumoto K, Nakata H, Motoyama H, Fujita S, Goto-Azuma K, Fujii Y, Watanabe O (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448(7156):U912–U914. doi:10.1038/nature06015

  • Keigwin L (1982) Isotopic paleo-oceanography of the caribean and east Pacific: role of Panama uplift in late neocene time. Science 217(4557):350–352. doi:10.1126/science.217.4557.350

    Article  CAS  Google Scholar 

  • Kelly DC, Nielsen TMJ, McCarren HK, Zachos JC, Röhl U (2010) Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene–Eocene thermal maximum. Palaeogeogr Palaeoclimatol Palaeoecol 293: 30–40. doi:http://dx.doi.org/10.1016/j.palaeo.2010.04.027

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, paleocenographic changes and benthic extinctions at the end of the paleocene. Nature 353(6341):225–229. doi:10.1038/353225a0

    Article  Google Scholar 

  • Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA, Weber TC (2011) Baseline map of carbon emissions from deforestation in tropical regions. Science 331(6015):312–315. doi:10.1126/science.1199697

    Article  CAS  Google Scholar 

  • Kleinen T, Brovkin V, von Bloh W, Archer D, Munhoven G (2010) Holocene carbon cycle dynamics. Geophys Res Lett 37. doi:10.1029/2009gl041391

  • Knorr G, Lohmann G (2003) Southern ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424(6948):532–536. doi:10.1038/nature01855

    Article  CAS  Google Scholar 

  • Koch PL, Zachos JC, Gingerich PD (1992) Correlation between isotope records in marine and continental carbon reservoirs near paleocene-eocene boundary. Nature 358(6384):319–322. doi:10.1038/358319a0

    Article  CAS  Google Scholar 

  • Koch PL, Zachos JC, Dettman DL (1995) Stable isotope statigraphy and paleoclimatology of the paleocene Bighorn Basin, Wyoming, USA. Palaeogeogr Palaeoclimatol Palaeoecol 115(1–4):61–89. doi:10.1016/0031-0182(94)00107-j

    Article  Google Scholar 

  • Köhler P, Knorr G, Buiron D, Lourantou A, Chappellaz J (2011) Abrupt rise in atmospheric CO2 at the onset of the bølling/allerød: in-situ ice core data versus true atmospheric signals. Clim Past 7(2):473–486. doi:10.5194/cp-7-473-2011

    Article  Google Scholar 

  • Kuerschner WM, Kvacek Z, Dilcher DL (2008) The impact of miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci U S A 105(2):449–453. doi:10.1073/pnas.0708588105

    Article  CAS  Google Scholar 

  • Kuhlemann J (2007) Paleogeographic and paleotopographic evolution of the Swiss and Eastern Alps since the oligocene. Glob Planet Change 58(1–4):224–236. doi:10.1016/j.gloplacha.2007.03.007

    Article  Google Scholar 

  • Kump LR, Kasting JF, Robinson JM (1991) Atmospheric oxygen variation through geologic time—introduction. Glob Planet Change 97(1–2):1–3

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292(5517):679–686. doi:10.1126/science.1059549

    Article  CAS  Google Scholar 

  • LaRiviere JP, Ravelo AC, Crimmins A, Dekens PS, Ford HL, Lyle M, Wara MW (2012) Late miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486(7401):97–100. doi:10.1038/nature11200

    Article  CAS  Google Scholar 

  • Lasaga AC, Ohmoto H (2002) The oxygen geochemical cycle: dynamics and stability. Geochim Cosmochim Acta 66(3):361–381. doi:10.1016/s0016-7037(01)00685-8

    Article  CAS  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the earth. Astron Astrophys 428(1):261–285. doi:10.1051/0004-6361:20041335

    Article  Google Scholar 

  • Lawrence KT, Herbert TD, Brown CM, Raymo ME, Haywood AM (2009) High-amplitude variations in North Atlantic sea surface temperature during the early pliocene warm period. Paleoceanography 24. doi:10.1029/2008pa001669

  • Lear CH, Elderfield H, Wilson PA (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287(5451):269–272. doi:10.1126/science.287.5451.269

    Article  CAS  Google Scholar 

  • Lewis AR, Marchant DR, Ashworth AC, Hedenas L, Hemming SR, Johnson JV, Leng MJ, Machlus ML, Newton AE, Raine JI, Willenbring JK, Williams M, Wolfe AP (2008) Mid-miocene cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci U S A 105(31):10676–10680. doi:10.1073/pnas.0802501105

    Article  CAS  Google Scholar 

  • Lisiecki LE (2010) Links between eccentricity forcing and the 100,000-year glacial cycle. Nat Geosci 3(5):349–352. doi:10.1038/ngeo828

    Article  CAS  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20(1):PA1003. doi:10.1029/2004pa001071

  • Lisiecki LE, Raymo ME (2007) Plio-pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat Sci Rev 26(1–2):56–69. doi:10.1016/j.quascirev.2006.09.005

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME, Curry WB (2008) Atlantic overturning responses to late pleistocene climate forcings. Nature 456(7218):85–88. doi:10.1038/nature07425

    Article  CAS  Google Scholar 

  • Liu Z, Pagani M, Zinniker D, DeConto R, Huber M, Brinkhuis H, Shah SR, Leckie RM, Pearson A (2009) Global cooling during the eocene-oligocene climate transition. Science 323(5918):1187–1190. doi:10.1126/science.1166368

    Article  CAS  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453(7193):383–386. doi:10.1038/nature06950

    Article  CAS  Google Scholar 

  • Lowenstein TK, Demicco RV (2006) Elevated eocene atmospheric CO2 and its subsequent decline. Science 313(5795):1928. doi:10.1126/science.1129555

    Article  CAS  Google Scholar 

  • Lunt DJ, Foster GL, Haywood AM, Stone EJ (2008a) Late pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454(7208):U1102–U1141. doi:10.1038/nature07223

  • Lunt DJ, Valdes PJ, Haywood A, Rutt IC (2008b) Closure of the Panama seaway during the pliocene: implications for climate and northern hemisphere glaciation. Clim Dynam 30(1):1–18. doi:10.1007/s00382-007-0265-6

    Article  Google Scholar 

  • Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ, Dowsett HJ (2010) Earth system sensitivity inferred from pliocene modelling and data. Nat Geosci 3(1):60–64. doi:10.1038/ngeo706

    Article  CAS  Google Scholar 

  • Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ, Dowsett HJ, Loptson CA (2012) On the causes of mid-pliocene warmth and polar amplification. Earth Planet Sci Lett 321:128–138. doi:10.1016/j.epsl.2011.12.042

    Article  CAS  Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453(7193):379–382. doi:10.1038/nature06949

    Article  CAS  Google Scholar 

  • Lyle M, Barron J, Bralower TJ, Huber M, Lyle AO, Ravelo AC, Rea DK, Wilson PA (2008) Pacific ocean and Cenozoic evolution of climate. Rev Geophys 46(2). doi:10.1029/2005rg000190

  • MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, van Ommen T, Smith A, Elkins J (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33(14). doi:10.1029/2006gl026152

  • Martin PA, Lea DW, Rosenthal Y, Shackleton NJ, Sarnthein M, Papenfuss T (2002) Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca. Earth Planet Sci Lett 198(1–2):193–209. doi:10.1016/s0012-821x(02)00472-7

    Article  CAS  Google Scholar 

  • Martinez-Boti MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF, Lunt DJ, Pancost RD, Badger MPS, Schmidt DN (2015) Plio-pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518(7537):49–54. doi:10.1038/nature14145

  • Mason-Delmotte V, Schultz M, Abe-Ouchi A, Beer J, Rouch AG, Jansen E, Lamberk K, Lutterbacher L, Naich T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmerman A (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Platner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group to the fifth assessment report of intergovernmental panel on climate change. Cambridge University Press, Cambridge, U.K. and New York, USA, pp 383–464

    Google Scholar 

  • McInerney FA, Wing SL (2011) The paleocene-eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu Rev Earth Planet Sci 39:489–516. doi:10.1146/annurev-earth-040610-133431

    Article  CAS  Google Scholar 

  • Meissner KJ, Bralower TJ, Alexander K, Jones TD, Sijp W, Ward M (2014) The paleocene-eocene thermal maximum: how much carbon is enough? Paleoceanography 29(10):946–963. doi:10.1002/2014pa002650

    Article  Google Scholar 

  • Menviel L, Joos F (2012) Toward explaining the holocene carbon dioxide and carbon isotope records: results from transient ocean carbon cycle-climate simulations. Paleoceanography 27:PA1207. doi:10.1029/2011pa002224

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287(5):401–428

    Article  CAS  Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The phanerozoic record of global sea-level change. Science 310(5752):1293–1298. doi:10.1126/science.1116412

    Article  CAS  Google Scholar 

  • Miller KG, Wright JD, Browning JV, Kulpecz A, Kominz M, Naish TR, Cramer BS, Rosenthal Y, Peltier WR, Sosdian S (2012) High tide of the warm pliocene: implications of global sea level for Antarctic deglaciation. Geology 40(5):407–410. doi:10.1130/g32869.1

    Article  CAS  Google Scholar 

  • Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291(5501):112–114. doi:10.1126/science.291.5501.112

    Article  CAS  Google Scholar 

  • Monnin E, Steig EJ, Siegenthaler U, Kawamura K, Schwander J, Stauffer B, Stocker TF, Morse DL, Barnola JM, Bellier B, Raynaud D, Fischer H (2004) Evidence for substantial accumulation rate variability in Antarctica during the holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet Sci Lett 224(1–2):45–54. doi:10.1016/j.epsl.2004.05.007

    Article  CAS  Google Scholar 

  • Morgan P, Swanberg CA (1985) On the cenozoic uplift and tectonic stability of the Colorado Plateau. J Geodyn 3(1–2):39–63. doi:10.1016/0264-3707(85)90021-3

    Article  Google Scholar 

  • Mudelsee M, Raymo ME (2005) Slow dynamics of the northern hemisphere glaciation. Paleoceanography 20(4). doi:10.1029/2005pa001153

  • Murphy BH, Farley KA, Zachos JC (2010) An extraterrestrial He-3-based timescale for the paleocene-eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim Cosmochim Acta 74(17):5098–5108. doi:10.1016/j.gca.2010.03.039

    Article  CAS  Google Scholar 

  • Neftel A, Oeschger H, Schwander J, Stauffer B, Zumbrunn R (1982) Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295(5846):220–223. doi:10.1038/295220a0

    Article  CAS  Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for increase in atmospheric CO2 inthe past 2 centuries. Nature 315(6014):45–47. doi:10.1038/315045a0

    Article  CAS  Google Scholar 

  • Nisbet EG, Jones SM, Maclennan J, Eagles G, Moed J, Warwick N, Bekki S, Braesicke P, Pyle JA, Fowler CMR (2009) Kick-starting ancient warming. Nat Geosci 2(3):156–159. doi:10.1038/ngeo454

    Article  CAS  Google Scholar 

  • Norris RD, Turner SK, Hull PM, Ridgwell A (2013) Marine ecosystem responses to cenozoic global change. Science 341(6145):492–498. doi:10.1126/science.1240543

    Article  CAS  Google Scholar 

  • Pagani M, Arthur MA, Freeman KH (1999a) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14(3):273–292. doi:10.1029/1999pa900006

    Article  Google Scholar 

  • Pagani M, Freeman KH, Arthur MA (1999b) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285(5429):876–879. doi:10.1126/science.285.5429.876

    Article  CAS  Google Scholar 

  • Pagani M, Lemarchand D, Spivack A, Gaillardet J (2005a) A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates. Geochim Cosmochim Acta 69(4):953–961. doi:10.1016/j.gca.2004.07.029

    Article  CAS  Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005b) Marked decline in atmospheric carbon dioxide concentrations during the paleogene. Science 309(5734):600–603. doi:10.1126/science.1110063

    Article  CAS  Google Scholar 

  • Pagani M, Pedentchouk N, Huber M, Sluijs A, Schouten S, Brinkhuis H, Damste JSS, Dickens GR, Expedit S (2006) Arctic hydrology during global warming at the palaeocene/eocene thermal maximum. Nature 442(7103):671–675. doi:10.1038/nature05043

    Article  CAS  Google Scholar 

  • Pagani M, Liu Z, LaRiviere J, Ravelo AC (2010) High earth-system climate sensitivity determined from pliocene carbon dioxide concentrations. Nat Geosci 3(1):27–30. doi:10.1038/ngeo724

    Article  CAS  Google Scholar 

  • Pagani M, Huber M, Liu Z, Bohaty SM, Henderiks J, Sijp W, Krishnan S, DeConto RM (2011) The role of carbon dioxide during the onset of Antarctic glaciation. Science 334(6060):1261–1264. doi:10.1126/science.1203909

    Article  CAS  Google Scholar 

  • Paillard D (2010) Climate and the orbital parameters of the earth. C R Geosci 342(4–5):273–285. doi:10.1016/j.crte.2009.12.006

    Article  Google Scholar 

  • Palmer MR, Brummer GJ, Cooper MJ, Elderfield H, Greaves MJ, Reichart GJ, Schouten S, Yu JM (2010) Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29 ka. Earth Planet Sci Lett 295(1–2):49–57. doi:10.1016/j.epsl.2010.03.023

    Article  CAS  Google Scholar 

  • Panchuk K, Ridgwell A, Kump LR (2008) Sedimentary response to paleocene-eocene thermal maximum carbon release: a model-data comparison. Geology 36(4):315–318. doi:10.1130/g24474a.1

    Article  CAS  Google Scholar 

  • Parrenin F, Masson-Delmotte V, Köhler P, Raynaud D, Paillard D, Schwander J, Barbante C, Landais A, Wegner A, Jouze J (2013) Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339(6123):1060–1063. doi:10.1126/science.1226368

    Article  CAS  Google Scholar 

  • Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich proterozoic atmosphere? Geology 31(1):87–90. doi:10.1130/0091-7613(2003)031<0087:mrpa>2.0.co;2

    Article  CAS  Google Scholar 

  • Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the eocene-oligocene climate transition. Nature 461(7267):U1110–U1204. doi:10.1038/nature08447

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436. doi:10.1038/20859

    Article  CAS  Google Scholar 

  • Petsch ST, Berner RA (1998) Coupling the geochemical cycles of C, P, Fe, and S: the effect on atmospheric O2 and the isotopic records of carbon and sulfur. Am J Sci 298(3):246–262

    Article  CAS  Google Scholar 

  • Philander SG, Fedorov AV (2003) Role of tropics in changing the response to milankovich forcing some three million years ago. Paleoceanography 18(2):Article # 1045. doi:10.1029/2002pa000837

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ et al. (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA. p 183–237

    Google Scholar 

  • Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, Bendle JA, Roehl U, Tauxe L, Raine JI, Huck CE, van de Flierdt T, Jamieson SSR, Stickley CE, van de Schootbrugge B, Escutia C, Brinkhuis H, Integrated ocean drilling P (2012) Persistent near-tropical warmth on the Antarctic continent during the early eocene epoch. Nature 488(7409):73–77. doi:10.1038/nature11300

    Article  CAS  Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405(6787):676–679. doi:10.1038/35015063

    Article  CAS  Google Scholar 

  • Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the pliocene epoch. Nature 429(6989):263–267. doi:10.1038/nature02567

    Article  CAS  Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late cenozoic climate. Nature 359(6391):117–122. doi:10.1038/359117a0

    Article  CAS  Google Scholar 

  • Raymo ME, Ruddiman WF, Froelich PN (1988) Influence of late cenozoic mountain building on ocean geochemical cycles. Geology 16(7):649–653. doi:10.1130/0091-7613(1988)016<0649:iolcmb>2.3.co;2

    Article  CAS  Google Scholar 

  • Retallack GJ (2009a) Greenhouse crises of the past 300 million years. Geol Soc Am Bull 121(9–10):1441–1455. doi:10.1130/b26341.1

    Article  CAS  Google Scholar 

  • Retallack GJ (2009b) Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle miocene greenhouse spike. Paleogeogr Paleoclimatol Paleoecol 281(1–2):57–65. doi:10.1016/j.palaeo.2009.07.011

    Article  Google Scholar 

  • Ridgwell A, Schmidt DN (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat Geosci 3(3):196–200. doi:10.1038/ngeo755

    Article  CAS  Google Scholar 

  • Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the earth system. Earth Planet Sci Lett 234(3–4):299–315. doi:10.1016/j.epsl.2005.03.006

    Article  CAS  Google Scholar 

  • Ridgwell AJ, Watson AJ, Maslin MA, Kaplan JO (2003) Implications of coral reef buildup for the controls on atmospheric CO2 since the last glacial maximum. Paleoceanography 18(4):1083. doi:10.1029/2003PA000893

    Article  Google Scholar 

  • Rohling EJ, Braun K, Grant K, Kucera M, Roberts AP, Siddall M, Trommer G (2010) Comparison between holocene and marine isotope stage-11 sea-level histories. Earth Planet Sci Lett 291(1–4):97–105. doi:10.1016/j.epsl.2009.12.054

    Article  CAS  Google Scholar 

  • Rohling EJ, Foster GL, Grant KM, Marino G, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508(7497):477–482. doi:10.1038/nature13230

  • Röthlisberger R, Bigler M, Wolff EW, Joos F, Monnin E, Hutterli MA (2004) Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation. Geophys Res Lett 31:L16207. doi:10.1029/2004gl020338

    Article  CAS  Google Scholar 

  • Royer DL (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Paleobot Palyno 114(1–2):1–28

    Article  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the phanerozoic. Geochim Cosmochim Acta 70(23):5665–5675. doi:10.1016/j.gca.2005.11.031

    Article  CAS  Google Scholar 

  • Royer DL, Berner RA, Beerling DJ (2001a) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54(4):349–392. doi:10.1016/s0012-8252(00)00042-8

    Article  CAS  Google Scholar 

  • Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA (2001b) Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the tertiary. Science 292(5525):2310–2313. doi:10.1126/science.292.5525.2310

    Article  CAS  Google Scholar 

  • Royer DL, Berner RA, Montanez IP, Tabor NJ, Beerling DJ (2004) CO2 as a primary driver of phanerozoic climate. GSA Today 14(3):4–10

    Article  Google Scholar 

  • Ruddiman WF (1997) Tectonic uplift and climate change. Plenum Press, New York, USA

    Book  Google Scholar 

  • Ruddiman WF (2003a) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61(3):261–293. doi:10.1023/B:CLIM.0000004577.17928.fa

    Article  CAS  Google Scholar 

  • Ruddiman WF (2003b) Orbital insolation, ice volume, and greenhouse gases. Quat Sci Rev 22(15–17):1597–1629. doi:10.1016/s0277-3791(03)00087-8

    Article  Google Scholar 

  • Ruddiman WF (2007) The early anthropogenic hypothesis: challenges and responses. Rev Geophys 45(3). doi:10.1029/2006rg000207

  • Salamy KA, Zachos JC (1999) Latest eocene early oligocene climate change and southern ocean fertility: inferences from sediment accumulation and stable isotope data. Paleogeogr Paleoclimatol Paleoecol 145(1–3):61–77. doi:10.1016/s0031-0182(98)00093-5

    Article  Google Scholar 

  • Sanyal A, Hemming NG, Hanson GN, Broecker WS (1995) Evidence for a higher pH in the glacial ocean from boron isotopes in foramicera. Nature 373(6511):234–236. doi:10.1038/373234a0

    Article  CAS  Google Scholar 

  • Scheffer M, Brovkin V, Cox PM (2006) Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys Res Lett 33(10). doi:10.1029/2005gl025044

  • Schilt A, Baumgartner M, Blunier T, Schwander J, Spahni R, Fischer H, Stocker TF (2010) Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quat Sci Rev 29(1–2):182–192. doi:10.1016/j.quascirev.2009.03.011

    Article  Google Scholar 

  • Schmidt GA, Shindell DT (2003) Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates. Paleoceanography 18(1). doi:10.1029/2002pa000757

  • Schmitt J, Schneider R, Elsig J, Leuenberger D, Lourantou A, Chappellaz J, Koehler P, Joos F, Stocker TF, Leuenberger M, Fischer H (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336(6082):711–714. doi:10.1126/science.1217161

    Article  CAS  Google Scholar 

  • Schurgers G, Mikolajewicz U, Gröger M, Maier-Reimer E, Vizcaino M, Winguth A (2006) Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between eemian and holocene. Clim Past 2(2):205–220. doi:10.5194/cp-2-205-2006

    Article  Google Scholar 

  • Schwander J, Sowers T, Barnola JM, Blunier T, Fuchs A, Malaize B (1997) Age scale of the air in the summit ice: implication for glacial-interglacial temperature change. J Geophys Res Atmos 102(D16):19483–19493. doi:10.1029/97jd01309

    Article  Google Scholar 

  • Secord R, Gingerich PD, Lohmann KC, MacLeod KG (2010) Continental warming preceding the palaeocene-eocene thermal maximum. Nature 467(7318):955–958. doi:10.1038/nature09441

    Article  CAS  Google Scholar 

  • Seki O, Foster GL, Schmidt DN, Mackensen A, Kawamura K, Pancost RD (2010) Alkenone and boron-based pliocene pCO2 records. Earth Planet Sci Lett 292(1–2):201–211. doi:10.1016/j.epsl.2010.01.037

    Article  CAS  Google Scholar 

  • Shackleton NJ (1987) the carbon isotope record of the cenozoic history of organic carbon burial and of oxygen in the ocean and atmosphere. In: Brook J, Feet AJ (eds) Marine petroleum source rocks. Geological Society Special Publication 26, vol 26. Blackwell, Boston, USA, pp 423–434

    Google Scholar 

  • Shackleton NJ (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289(5486):1897–1902. doi:10.1126/science.289.5486.1897

    Article  CAS  Google Scholar 

  • Shackleton N (2001) Paleoclimate—climate change across the hemispheres. Science 291(5501):58–59. doi:10.1126/science.10.1126/SCIENCE.1057253

    Article  CAS  Google Scholar 

  • Shackleton NJ, Hall MA, Pate D (1995) Pliocene stable isotope stratigraphy of site 846. Proc Ocean Drill Prog 138:337–355. doi:10.2973/odp.proc.sr.138.117.1995

    Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2004) Middle miocene southern ocean cooling and Antarctic cryosphere expansion. Science 305(5691):1766–1770. doi:10.1126/science.1100061

    Article  CAS  Google Scholar 

  • Shevenell AE, Kennett JP, Lea DW (2008) Middle miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: a southern ocean perspective. Geochem Geophys Geosyst 9. doi:10.1029/2007gc001736

  • Shin SI, Liu Z, Otto-Bliesner B, Brady EC, Kutzbach JE, Harrison SP (2003) A simulation of the last glacial maximum climate using the NCAR-CCSM. Clim Dynam 20(2–3):127–151. doi:10.1007/s00382-002-0260-x

    Google Scholar 

  • Siegenthaler U, Stocker TF, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late pleistocene. Science 310(5752):1313–1317. doi:10.1126/science.1120130

    Article  CAS  Google Scholar 

  • Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806):859–869. doi:10.1038/35038000

    Article  CAS  Google Scholar 

  • Sigman DM, Jaccard SL, Haug GH (2004) Polar ocean stratification in a cold climate. Nature 428(6978):59–63. doi:10.1038/nature02357

    Article  CAS  Google Scholar 

  • Skarke A, Ruppel C, Kodis M, Brothers D, Lobecker E (2014) Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat Geosci 7(9):657–661. doi:10.1038/ngeo2232

    Article  CAS  Google Scholar 

  • Sloan LC, Morrill C (1998) Orbital forcing and eocene continental temperatures. Paleogeogr Paleoclimatol Paleoecol 144(1–2):21–35. doi:10.1016/s0031-0182(98)00091-1

    Article  Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Damste JSS, Dickens GR, Huber M, Reichart GJ, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K, Expedition S (2006) Subtropical arctic ocean temperatures during the palaeocene/eocene thermal maximum. Nature 441(7093):610–613. doi:10.1038/nature04668

    Article  CAS  Google Scholar 

  • Sluijs A, Bowen GJ, Brinkhuis H, Lourens LJ, Thomas E (2007) The palaeocene-eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of climate change. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep time perspectives on climate change: marrying the signal from computer models and biological proxies: the micropalaeontological society, special publications. The Geological Society, London, U.K., pp 323–351

    Google Scholar 

  • Smith HJ, Wahlen M, Mastroianni D, Taylor K, Mayewski P (1997) The CO2 concentration of air trapped in Greenland ice sheet project 2 ice formed during periods of rapid climate change. J Geophys Res Oceans 102(C12):26577–26582. doi:10.1029/97jc00163

    Article  CAS  Google Scholar 

  • Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2009) Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci. USA 106:17655–17660. doi:10.1073/pnas.0909674106

  • Smith T, Rose KD, Gingerich PD (2006) Rapid Asia-Europe-North America geographic dispersal of earliest eocene primate teilhardina during the paleocene-eocene thermal maximum. Proc Natl Acad Sci U S A 103(30):11223–11227. doi:10.1073/pnas.0511296103

    Article  CAS  Google Scholar 

  • Sosdian S, Rosenthal Y (2009) Deep-sea temperature and ice volume changes across the pliocene-pleistocene climate transitions. Science 325(5938):306–310. doi:10.1126/science.1169938

    Article  CAS  Google Scholar 

  • Stauffer B, Lochbronner E, Oeschger H, Schwander J (1988) Methane concentration in the glacial atmosphere was only half that of the preindustrial holocene. Nature 332(6167):812–814. doi:10.1038/332812a0

    Article  CAS  Google Scholar 

  • Steph S, Tiedemann R, Prange M, Groeneveld J, Nuernberg D, Reuning L, Schulz M, Haug GH (2006) Changes in Caribbean surface hydrography during the pliocene shoaling of the Central American Seaway. Paleoceanography 21(4). doi:10.1029/2004pa001092

  • Stocker BD, Strassmann K, Joos F (2011) Sensitivity of holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model. Biogeosciences 8(1):69–88. doi:10.5194/bg-8-69-2011

    Article  CAS  Google Scholar 

  • Storey M, Duncan RA, Swisher CC III (2007) Paleocene-eocene thermal maximum and the opening of the northeast Atlantic. Science 316(5824):587–589. doi:10.1126/science.1135274

    Article  CAS  Google Scholar 

  • Sundquist ET (1991) Steady state and non-steady state carbonate silicate controls on atmospheric CO2. Quat Sci Rev 10(2–3):283–296. doi:10.1016/0277-3791(91)90026-q

    Article  Google Scholar 

  • Sundquist ET, Ackerman KV (2014) The geologic history of the carbon cycle. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 361–398. doi:10.1016/B978-0-08-095975-7.00809-3

  • Thomas E (1989) Development of cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters. Geol Soc Spec Publ 47(1):283–296. doi:10.1144/gsl.sp.1989.047.01.21

    Article  Google Scholar 

  • Thomas E (2003) Extinction and food at the seafloor: a high-resolution benthic foraminiferal record across the initial Eocene thermal maximum, Southern Ocean site 690. Geol Soc Am Spec Pap 369:319–332. doi:10.1130/0-8137-2369-8.319

    Google Scholar 

  • Thomas E (2007) Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on earth? In: Monechi S, Coccioni R, Rampino MR (eds) Large ecosystem perturbations: causes and consequences, vol 424. Special Paper No. 424. Geological Society of America, pp 1–23. doi:10.1130/2007.2424(01)

  • Thomas E, Shackleton NJ (1996) The paleocene-eocene benthic foraminiferal extinction and stable isotope anomalies. Geol Soc Spec Publ 101:401–441. doi:10.1144/gsl.sp.1996.101.01.20

    Article  Google Scholar 

  • Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the paleocene-eocene thermal maximum. Geology 30(12):1067–1070. doi:10.1130/0091-7613(2002)030<1067:wtfftf>2.0.co;2

    Article  CAS  Google Scholar 

  • Torfstein A, Winckler G, Tripati A (2010) Productivity feedback did not terminate the paleocene-eocene thermal maximum (PETM). Clim Past 6(2):265–272. doi:10.5194/cp-6-265-2010

    Article  Google Scholar 

  • Tripati A, Elderfield H (2005) Deep-sea temperature and circulation changes at the paleocene-eocene thermal maximum. Science 308(5730):1894–1898. doi:10.1126/science.1109202

    Article  CAS  Google Scholar 

  • Tripati AK, Roberts CD, Eagle RA (2009) Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326(5958):1394–1397. doi:10.1126/science.1178296

    Article  CAS  Google Scholar 

  • Trudinger CM, Enting IG, Francey RJ, Etheridge DM, Rayner PJ (1999) Long-term variability in the global carbon cycle inferred from a high-precision CO2 and δ13C ice-core record. Tellus B 51(2):233–248. doi:10.1034/j.1600-0889.1999.t01-1-00009.x

    Article  Google Scholar 

  • Tschumi J, Stauffer B (2000) Reconstructing past atmospheric CO2 concentration based on ice-core analyses: open questions due to in situ production of CO2 in the ice. J Glaciol 46(152):45–53. doi:10.3189/172756500781833359

    Article  CAS  Google Scholar 

  • Vanderburgh J, Visscher H, Dilcher DL, Kurschner WM (1993) Paleoatmospheric signatures in neogene fossil leaves. Science 260(5115):1788–1790. doi:10.1126/science.260.5115.1788

    Article  CAS  Google Scholar 

  • Wallmann K (2001) Controls on the cretaceous and cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65(18):3005–3025. doi:10.1016/s0016-7037(01)00638-x

    Article  CAS  Google Scholar 

  • Wallmann K (2014) Is late quaternary climate change governed by self-sustained oscillations in atmospheric CO2? Geochim Cosmochim Acta 132:413–439. doi:10.1016/j.gca.2013.10.046

    Article  CAS  Google Scholar 

  • Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Nino-like conditions during the pliocene warm period. Science 309(5735):758–761. doi:10.1126/science.1112596

    Article  CAS  Google Scholar 

  • Werner M, Tegen I, Harrison SP, Kohfeld KE, Prentice IC, Balkanski Y, Rodhe H, Roelandt C (2002) Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. J Geophys Res Atmos 107(D24). doi:10.1029/2002jd002365

  • Westbrook GK, Thatcher KE, Rohling EJ, Piotrowski AM, Paelike H, Osborne AH, Nisbet EG, Minshull TA, Lanoiselle M, James RH, Huehnerbach V, Green D, Fisher RE, Crocker AJ, Chabert A, Bolton C, Beszczynska-Moeller A, Berndt C, Aquilina A (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett 36. doi:10.1029/2009gl039191

  • Westerhold T, Roehl U, Laskar J, Raffi I, Bowles J, Lourens LJ, Zachos JC (2007) On the duration of magnetochrons C24r and C25n and the timing of early eocene global warming events: implications from the ocean drilling program leg 208 Walvis Ridge depth transect. Paleoceanography 22(1). doi:10.1029/2006pa001322

  • Westerhold T, Roehl U, Laskar J (2012) Time scale controversy: accurate orbital calibration of the early paleogene. Geochem Geophys Geosyst 13. doi:10.1029/2012gc004096

  • Willeit M, Ganopolski A, Dalmonech D, Foley AM, Feulner G (2014) Time-scale and state dependence of the carbon-cycle feedback to climate. Clim Dynam 42(7–8):1699–1713. doi:10.1007/s00382-014-2102-z

    Article  Google Scholar 

  • Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the paleocene-eocene boundary. Science 310(5750):993–996. doi:10.1126/science.1116913

    Article  CAS  Google Scholar 

  • Wolff EW (2011) Greenhouse gases in the earth system: a palaeoclimate perspective. Philos Trans R Soc Ser A 369(1943):2133–2147. doi:10.1098/rsta.2010.0225

    Article  CAS  Google Scholar 

  • Wright JD, Schaller MF (2013) Evidence for a rapid release of carbon at the paleocene-eocene thermal maximum. Proc Natl Acad Sci U S A 110(40):15908–15913. doi:10.1073/pnas.1309188110

    Article  CAS  Google Scholar 

  • Yemane K, Bonnefille R, Faure H (1985) Paleoclimatic and tectonic implications of neogene microflora from the northwestern Ethiopian highlands. Nature 318(6047):653–656. doi:10.1038/318653a0

    Article  Google Scholar 

  • Yu J, Broecker WS, Elderfield H, Jin Z, McManus J, Zhang F (2010) Loss of carbon from the deep sea since the last glacial maximum. Science 330(6007):1084–1087. doi:10.1126/science.1193221

    Article  CAS  Google Scholar 

  • Zachos JC, Lohmann KC, Walker JCG, Wise SW (1993) Abrupt climate change and transient climates during paleogene: a marine perspective. J Geol 101(2):191–213

    Article  CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693. doi:10.1126/science.1059412

    Article  CAS  Google Scholar 

  • Zachos JC, Wara MW, Bohaty S, Delaney ML, Petrizzo MR, Brill A, Bralower TJ, Premoli-Silva I (2003) A transient rise in tropical sea surface temperature during the paleocene-eocene Thermal Maximum. Science 302(5650):1551–1554. doi:10.1126/science.1090110

    Article  CAS  Google Scholar 

  • Zachos JC, Rohl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the paleocene-eocene thermal maximum. Science 308(5728):1611–1615. doi:10.1126/science.1109004

    Article  CAS  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451(7176):279–283. doi:10.1038/nature06588

    Article  CAS  Google Scholar 

  • Zeebe RE (2013) What caused the long duration of the paleocene-eocene thermal maximum? Paleoceanography 28(3):440–452. doi:10.1002/palo.20039

    Article  Google Scholar 

  • Zeebe RE, Zachos JC (2013) Long-term legacy of massive carbon input to the earth system: anthropocene versus eocene. Philos Trans R Soc Ser A 371(2001). doi:10.1098/rsta.2012.0006

  • Zeebe RE, Zachos JC, Dickens GR (2009) Carbon dioxide forcing alone insufficient to explain palaeocene-eocene thermal maximum warming. Nat Geosci 2(8):576–580. doi:10.1038/ngeo578

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A.N. Ussiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ussiri, D.A., Lal, R. (2017). Historical Perspectives of the Global Carbon Cycle. In: Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-53845-7_5

Download citation

Publish with us

Policies and ethics