Skip to main content

Bile Acid-Induced Liver Injury in Cholestasis

  • Chapter
  • First Online:
Cellular Injury in Liver Diseases

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Bile acids are physiological detergent molecules synthesized from cholesterol exclusively in the hepatocytes. Bile acids play important roles in generating bile flow and facilitating intestinal nutrient absorption. Bile acids are endogenous ligands of nuclear receptors and cell surface G protein-coupled receptors, which regulate various biological processes including metabolism, immune response, and cell proliferation. Cholestasis is a pathological condition where bile flow out of the liver is reduced or blocked, leading to accumulation of bile acids, cell death, and inflammation in the liver. Chronic cholestasis leads to liver fibrosis, cirrhosis, failure, and carcinogenesis. During cholestasis, bile acid-activated signaling regulates bile acid detoxification mechanisms as well as cell survival and proliferation. The hydrophilic bile acid UDCA has been used as the primary cholestasis therapy for decades. Pharmacological agents targeting the bile acid receptors are being developed as novel therapeutics for cholestasis. This chapter summarizes bile acid biology, mechanism of cholestatic liver injury, and current and future bile acid-based therapeutics for cholestasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

UDCA:

Ursodeoxycholic acid

CYP:

Cytochrome p450

CA:

Cholic acid

CDCA:

Chenodeoxycholic acid

DCA:

Deoxycholic acid

MCA:

Muricholic acid

CYP7A1:

Cholesterol 7α-hydroxylase

CYP8B1:

Sterol 12α-hydroxylase

CYP27A1:

Sterol 27-hydroxylase

CYP7B1:

Oxysterol 7α-hydroxylase

BSH:

Bile salt hydrolases

LCA:

Lithocholic acid

BACS:

Bile acyl-CoA synthetase

BACL:

Bile acid-CoA ligase

BAAT:

Bile acid-CoA:amino acid N-acyltransferase

NTCP:

Na+-dependent taurocholate transporter

OATP:

Organic anion transporter

BSEP:

Bile salt export pump

ABC:

ATP-binding cassette transporter

MDR:

Multi-drug resistant

MRP:

MDR-related protein

OST:

Organic solute transporter

ASBT:

Apical sodium-dependent bile salt transporter

I-BABP:

Intestinal bile acid-binding protein

ICP:

Intrahepatic cholestasis of pregnancy

PFIC:

Progressive familial intrahepatic cholestasis

TJP2:

The junction protein 2 gene

PBC:

Primary biliary cirrhosis

PSC:

Primary sclerosing cholangitis

GCDCA:

Glycochenodeoxycholic acid

JNK:

c-Jun N-terminal kinase

PKC:

Protein kinase C

EGFR:

Epidermal growth factor receptor

ROS:

Reactive oxygen species

MPT:

Mitochondrial permeability transition pore

DAMP:

Damage-associated molecular pattern molecules

ERK:

Extracellular signal–regulated kinases

Egr-1:

Early growth response factor 1

TNFα:

Tumor necrosis factor α

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

ICAM:

Intracellular adhesion molecule

FXR:

Farnesoid X receptor

PXR:

Pregnane X receptor

CAR:

Constitutive androgen receptor

RXR:

Retinoid X receptor

GPCR:

G protein-coupled receptor

S1PR:

Sphingosine-1-phosphate receptor

SHP:

Small heterodimer partner

LRH-1:

Liver receptor homolog-1

HNF4α:

Hepatocyte nuclear factor 4α

FGF15:

Fibroblast growth factor 15

FGFR4:

Fibroblast growth factor receptor 4

SULT2A1:

Sulfotransferase 2A1

UGT:

UDP-glucuronosyltransferase

PKA:

Protein kinase A

GLP-1:

Glucagon-like peptide 1

NASH:

Non-alcoholic steatohepatitis

SphK:

Sphingosine kinase

norUDCA:

nor-Ursodeoxycholic

PPARα:

Peroxisome proliferator-activated receptor α

OCA:

Obeticholic acid

GGT:

γ-Glutamyltransferase

References

  • Adada M, Canals D, Hannun YA, Obeid LM (2013) Sphingosine-1-phosphate receptor 2: a review. FEBS J 280:6354–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, Cevikbas F, Steinhoff M, Nassini R, Materazzi S, Guerrero-Alba R, Valdez-Morales E, Cottrell GS, Schoonjans K, Geppetti P, Vanner SJ, Bunnett NW, Corvera CU (2013a) The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 123:1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU (2013b) The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144:145–154

    Article  CAS  PubMed  Google Scholar 

  • Ali AH, Carey EJ, Lindor KD (2015) Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 3:5

    PubMed  PubMed Central  Google Scholar 

  • Allen K, Kim ND, Moon JO, Copple BL (2010) Upregulation of early growth response factor-1 by bile acids requires mitogen-activated protein kinase signaling. Toxicol Appl Pharmacol 243:63–67

    Article  CAS  PubMed  Google Scholar 

  • Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alnouti Y (2009) Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 108:225–246

    Article  CAS  PubMed  Google Scholar 

  • Alvarez L, Jara P, Sanchez-Sabate E, Hierro L, Larrauri J, Diaz MC, Camarena C, De la Vega A, Frauca E, Lopez-Collazo E, Lapunzina P (2004) Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Hum Mol Genet 13:2451–2460

    Article  CAS  PubMed  Google Scholar 

  • Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276:28857–28865

    Article  CAS  PubMed  Google Scholar 

  • Araya Z, Wikvall K (1999) 6alpha-hydroxylation of taurochenodeoxycholic acid and lithocholic acid by CYP3A4 in human liver microsomes. Biochim Biophys Acta 1438:47–54

    Article  CAS  PubMed  Google Scholar 

  • Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, Vecchiotti S, Gonzalez FJ, Schoonjans K, Strazzabosco M, Fickert P, Trauner M (2011) Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/− (Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO output. Hepatology 54:1303–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005) OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Beilke LD, Aleksunes LM, Holland RD, Besselsen DG, Beger RD, Klaassen CD, Cherrington NJ (2009) Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab Dispos 37:1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti M, Carulli L, Concari M, Martella P, Loria P, Tagliafico E, Ferrari S, Del Puppo M, Amati B, De Fabiani E, Crestani M, Amorotti C, Manenti A, Carubbi F, Pinetti A, Carulli N (2001) Suppression of bile acid synthesis, but not of hepatic cholesterol 7alpha-hydroxylase expression, by obstructive cholestasis in humans. Hepatology 34:234–242

    Article  CAS  PubMed  Google Scholar 

  • Beuers U (2006) Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat Clin Pract Gastroenterol Hepatol 3:318–328

    Article  CAS  PubMed  Google Scholar 

  • Bhalla S, Ozalp C, Fang S, Xiang L and Kemper JK (2004) Ligand-activated PXR interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha: functional implications in hepatic cholesterol and glucose metabolism. J Biol Chem 279:45139–45147

    Google Scholar 

  • Billington D, Evans CE, Godfrey PP, Coleman R (1980) Effects of bile salts on the plasma membranes of isolated rat hepatocytes. Biochem J 188:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorkhem I, Einarsson K, Melone P, Hylemon P (1989) Mechanism of intestinal formation of deoxycholic acid from cholic acid in humans: evidence for a 3-oxo-delta 4-steroid intermediate. J Lipid Res 30:1033–1039

    CAS  PubMed  Google Scholar 

  • Bohan A, Chen WS, Denson LA, Held MA, Boyer JL (2003) Tumor necrosis factor alpha-dependent up-regulation of Lrh-1 and Mrp3(Abcc3) reduces liver injury in obstructive cholestasis. J Biol Chem 278:36688–36698

    Article  CAS  PubMed  Google Scholar 

  • Boyer JL (2013) Bile formation and secretion. Compr Physiol 3:1035–1078

    PubMed  PubMed Central  Google Scholar 

  • Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai SY, Moustafa T, Zollner G, Lee JY, Ballatori N (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290:G1124–G1130

    Article  CAS  PubMed  Google Scholar 

  • Bruce CR, Risis S, Babb JR, Yang C, Kowalski GM, Selathurai A, Lee-Young RS, Weir JM, Yoshioka K, Takuwa Y, Meikle PJ, Pitson SM, Febbraio MA (2012) Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes 61:3148–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN (2003) Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 34:91–96

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanarayanan M, Shneider BL (2003) Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 278:19909–19916

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Ananthanarayanan M, Emre S, Neimark E, Bull LN, Knisely AS, Strautnieks SS, Thompson RJ, Magid MS, Gordon R, Balasubramanian N, Suchy FJ, Shneider BL (2004) Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity. Gastroenterology 126:756–764

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Duwaerts CC, Rooijen N, Wintermeyer P, Mott S, Gregory SH (2011) NK cells suppress experimental cholestatic liver injury by an interleukin-6-mediated, Kupffer cell-dependent mechanism. J Hepatol 54:746–752

    Article  CAS  PubMed  Google Scholar 

  • Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs S, Yeh RL, Georges E, Ling V (1995) Identification of a sister gene to P-glycoprotein. Cancer Res 55:2029–2034

    CAS  PubMed  Google Scholar 

  • Chong CP, Mills PB, McClean P, Gissen P, Bruce C, Stahlschmidt J, Knisely AS, Clayton PT (2012) Bile acid-CoA ligase deficiency—a new inborn error of bile acid metabolism. J Inherit Metab Dis 35:521–530

    Article  PubMed  Google Scholar 

  • Cipriani S, Mencarelli A, Chini MG, Distrutti E, Renga B, Bifulco G, Baldelli F, Donini A, Fiorucci S (2011) The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One 6:e25637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui YJ, Aleksunes LM, Tanaka Y, Goedken MJ, Klaassen CD (2009) Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci 110:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amore C, Di Leva FS, Sepe V, Renga B, Del Gaudio C, D’Auria MV, Zampella A, Fiorucci S, Limongelli V (2014) Design, synthesis, and biological evaluation of potent dual agonists of nuclear and membrane bile acid receptors. J Med Chem 57:937–954

    Article  PubMed  CAS  Google Scholar 

  • Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ (2001) The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121:140–147

    Article  CAS  PubMed  Google Scholar 

  • Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen BA, Schaap FG, Rust C, Beuers U (2012) Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health. J Hepatol 57:133–140

    Article  CAS  PubMed  Google Scholar 

  • Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA, Lindor KD, Jones DE (2015) Novel therapeutic targets in primary biliary cirrhosis. Nat Rev Gastroenterol Hepatol 12(3):147–158

    Article  CAS  PubMed  Google Scholar 

  • European Association for the Study of the Liver (2009) EASL clinical practice guidelines: management of cholestatic liver diseases. J Hepatol 51:237–267

    Article  Google Scholar 

  • Falany CN, Johnson MR, Barnes S, Diasio RB (1994) Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem 269:19375–19379

    CAS  PubMed  Google Scholar 

  • Falany CN, Fortinberry H, Leiter EH, Barnes S (1997) Cloning, expression, and chromosomal localization of mouse liver bile acid CoA:amino acid N-acyltransferase. J Lipid Res 38:1139–1148

    CAS  PubMed  Google Scholar 

  • Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, Kaufmann SH, Gores GJ (1999) Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 103:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorucci S, Clerici C, Antonelli E, Orlandi S, Goodwin B, Sadeghpour BM, Sabatino G, Russo G, Castellani D, Willson TM, Pruzanski M, Pellicciari R, Morelli A (2005) Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 313:604–612

    Article  CAS  PubMed  Google Scholar 

  • Fischler B, Lamireau T (2014) Cholestasis in the newborn and infant. Clin Res Hepatol Gastroenterol 38:263–267

    Article  CAS  PubMed  Google Scholar 

  • Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA (2006) Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol 290:G912–G922

    Article  CAS  PubMed  Google Scholar 

  • Gehring S, Dickson EM, San Martin ME, van Rooijen N, Papa EF, Harty MW, Tracy TF Jr, Gregory SH (2006) Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology 130:810–822

    Article  CAS  PubMed  Google Scholar 

  • Ghonem NS, Assis DN, Boyer JL (2015) Fibrates and cholestasis. Hepatology 62:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuro-o M, Lanske B, Razzaque MS, Mohammadi M (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Ospina N, Potter CJ, Xiao R, Manickam K, Kim MS, Kim KH, Shneider BL, Picarsic JL, Jacobson TA, Zhang J, He W, Liu P, Knisely AS, Finegold MJ, Muzny DM, Boerwinkle E, Lupski JR, Plon SE, Gibbs RA, Eng CM, Yang Y, Washington GC, Porteus MH, Berquist WE, Kambham N, Singh RJ, Xia F, Enns GM, Moore DD (2016) Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun 7:10713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong YZ, Everett ET, Schwartz DA, Norris JS, Wilson FA (1994) Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol. Proc Natl Acad Sci U S A 91:4741–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526

    Article  CAS  PubMed  Google Scholar 

  • Gujral JS, Farhood A, Bajt ML, Jaeschke H (2003) Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice. Hepatology 38:355–363

    Article  PubMed  Google Scholar 

  • Gujral JS, Liu J, Farhood A, Hinson JA, Jaeschke H (2004) Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 286:G499–G507

    Article  CAS  PubMed  Google Scholar 

  • Guo GL, Lambert G, Negishi M, Ward JM, Brewer HB Jr, Kliewer SA, Gonzalez FJ, Sinal CJ (2003) Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem 278:45062–45071

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Stravitz RT, Dent P, Hylemon PB (2001) Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 276:15816–15822

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Natarajan R, Payne SG, Studer EJ, Spiegel S, Dent P, Hylemon PB (2004) Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. J Biol Chem 279:5821–5828

    Article  CAS  PubMed  Google Scholar 

  • Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93:1326–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A 88:10629–10633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halilbasic E, Fiorotto R, Fickert P, Marschall HU, Moustafa T, Spirli C, Fuchsbichler A, Gumhold J, Silbert D, Zatloukal K, Langner C, Maitra U, Denk H, Hofmann AF, Strazzabosco M, Trauner M (2009) Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology 49:1972–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, Kowdley KV, Vincent C, Bodhenheimer HC Jr, Pares A, Trauner M, Marschall HU, Adorini L, Sciacca C, Beecher-Jones T, Castelloe E, Bohm O, Shapiro D (2015) Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148(751–761):e758

    Google Scholar 

  • Hofmann AF (2002) Rifampicin and treatment of cholestatic pruritus. Gut 51:756–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, Beuers U (2012) A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55:173–183

    Article  CAS  PubMed  Google Scholar 

  • Hylemon PB, Melone PD, Franklund CV, Lund E, Bjorkhem I (1991) Mechanism of intestinal 7 alpha-dehydroxylation of cholic acid: evidence that Allo-deoxycholic acid is an inducible side-product. J Lipid Res 32:89–96

    CAS  PubMed  Google Scholar 

  • Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y (2005) Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 115:2202–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki S, Ohira H, Nishiguchi S, Zeniya M, Kaneko S, Onji M, Ishibashi H, Sakaida I, Kuriyama S, Ichida T, Onishi S, Toda G, Study Group of Intractable Liver Diseases for Research on a Specific Disease HSRGMoHL and Welfare of J (2008) The efficacy of ursodeoxycholic acid and bezafibrate combination therapy for primary biliary cirrhosis: a prospective, multicenter study. Hepatol Res 38:557–564

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang ZZ, Takahashi S, Tanaka N, Desai D, Amin SG, Albert I, Patterson AD, Gonzalez FJ (2015a) Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 125:386–402

    Article  PubMed  Google Scholar 

  • Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, Liu Y, Gavrilova O, Patterson AD, Gonzalez FJ (2015b) Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 6:10166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353:1261–1273

    Article  CAS  PubMed  Google Scholar 

  • Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277:2908–2915

    Article  CAS  PubMed  Google Scholar 

  • Katsuma S, Hirasawa A, Tsujimoto G (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329:386–390

    Article  CAS  PubMed  Google Scholar 

  • Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    Article  CAS  PubMed  Google Scholar 

  • Keitel V, Nies AT, Brom M, Hummel-Eisenbeiss J, Spring H, Keppler D (2003) A common Dubin-Johnson syndrome mutation impairs protein maturation and transport activity of MRP2 (ABCC2). Am J Physiol Gastrointest Liver Physiol 284:G165–G174

    Article  CAS  PubMed  Google Scholar 

  • Keitel V, Reinehr R, Gatsios P, Rupprecht C, Gorg B, Selbach O, Haussinger D, Kubitz R (2007) The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45:695–704

    Article  CAS  PubMed  Google Scholar 

  • Keitel V, Donner M, Winandy S, Kubitz R, Haussinger D (2008) Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 372:78–84

    Article  CAS  PubMed  Google Scholar 

  • Keitel V, Ullmer C, Haussinger D (2010) The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem 391:785–789

    Article  CAS  PubMed  Google Scholar 

  • Kim ND, Moon JO, Slitt AL, Copple BL (2006) Early growth response factor-1 is critical for cholestatic liver injury. Toxicol Sci 90:586–595

    Article  CAS  PubMed  Google Scholar 

  • Kliewer SA, Willson TM (2002) Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J Lipid Res 43:359–364

    CAS  PubMed  Google Scholar 

  • Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 23:687–702

    Article  CAS  PubMed  Google Scholar 

  • Krahenbuhl S, Talos C, Fischer S, Reichen J (1994) Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19:471–479

    CAS  PubMed  Google Scholar 

  • Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ (2000) Hepatic transport of bile salts. Semin Liver Dis 20:273–292

    Article  CAS  PubMed  Google Scholar 

  • Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ (2012) Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 427:600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar DP, Asgharpour A, Mirshahi F, Park SH, Liu S, Imai Y, Nadler JL, Grider JR, Murthy KS, Sanyal AJ (2016) Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote glucose homeostasis. J Biol Chem 291:6626–6640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, Kullak-Ublick GA, Meier PJ, Pauli-Magnus C (2007) Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 17:47–60

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chiang JY (2005) Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288:G74–G84

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chiang JY (2007) A novel role of transforming growth factor beta1 in transcriptional repression of human cholesterol 7alpha-hydroxylase gene. Gastroenterology 133:1660–1669

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66:948–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Jahan A, Chiang JY (2006) Bile acids and cytokines inhibit the human cholesterol 7 alpha-hydroxylase gene via the JNK/c-Jun pathway in human liver cells. Hepatology 43:1202–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Owsley E, Matozel M, Hsu P, Novak CM, Chiang JY (2010) Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology 52:678–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD, Erickson SK, Chiang JY (2012) Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J Biol Chem 287:1861–1873

    Article  CAS  PubMed  Google Scholar 

  • Li S, Hsu DD, Li B, Luo X, Alderson N, Qiao L, Ma L, Zhu HH, He Z, Suino-Powell K, Ji K, Li J, Shao J, Xu HE, Li T, Feng GS (2014) Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab 20:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieu T, Jayaweera G, Zhao P, Poole DP, Jensen D, Grace M, McIntyre P, Bron R, Wilson YM, Krappitz M, Haerteis S, Korbmacher C, Steinhoff MS, Nassini R, Materazzi S, Geppetti P, Corvera CU, Bunnett NW (2014) The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology 147:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin BC, Wang M, Blackmore C, Desnoyers LR (2007) Liver-specific activities of FGF19 require Klotho beta. J Biol Chem 282:27277–27284

    Article  CAS  PubMed  Google Scholar 

  • Lioudaki E, Ganotakis ES, Mikhailidis DP (2011) Lipid lowering drugs and gallstones: a therapeutic option? Curr Pharm Des 17:3622–3631

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 112:1678–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low-Beer TS, Nutter S (1978) Colonic bacterial activity, biliary cholesterol saturation, and pathogenesis of gallstones. Lancet 2:1063–1065

    Article  CAS  PubMed  Google Scholar 

  • Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Ko B, Elliott M, Zhou M, Lindhout DA, Phung V, To C, Learned RM, Tian H, DePaoli AM, Ling L (2014) A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med 6:247ra100

    Article  PubMed  CAS  Google Scholar 

  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Marcus SN, Heaton KW (1988) Deoxycholic acid and the pathogenesis of gall stones. Gut 29:522–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Itadani H, Tanaka K (2002) Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298:714–719

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, Kanatani A, Tamai Y (2006) Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-bar) in mice. J Endocrinol 191:197–205

    Article  CAS  PubMed  Google Scholar 

  • Mason JI, Boyd GS (1978) The suppressive effect of the catatoxic steroid, pregnenolone-16alpha-carbonitrile, on liver microsomal cholesterol-7alpha-hydroxlyase. Steroids 31:849–854

    Article  CAS  PubMed  Google Scholar 

  • McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, Adorini L, Golden-Mason L, Levi M, Rosen HR (2013) Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 288:11761–11770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier PJ (1995) Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into bile. Am J Physiol 269:G801–G812

    CAS  PubMed  Google Scholar 

  • Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Fang S, Bae Y, Kemper JK (2006) Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J Biol Chem 281:14537–14546

    Article  CAS  PubMed  Google Scholar 

  • Miyake JH, Wang SL, Davis RA (2000) Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase. J Biol Chem 275:21805–21808

    Article  CAS  PubMed  Google Scholar 

  • Mullenbach R, Bennett A, Tetlow N, Patel N, Hamilton G, Cheng F, Chambers J, Howard R, Taylor-Robinson SD, Williamson C (2005) ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy. Gut 54:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myant NB, Mitropoulos KA (1977) Cholesterol 7 alpha-hydroxylase. J Lipid Res 18:135–153

    CAS  PubMed  Google Scholar 

  • Neimark E, Chen F, Li X, Shneider BL (2004) Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40:149–156

    Article  CAS  PubMed  Google Scholar 

  • Neuman M, Angulo P, Malkiewicz I, Jorgensen R, Shear N, Dickson ER, Haber J, Katz G, Lindor K (2002) Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol 17:196–202

    Article  CAS  PubMed  Google Scholar 

  • Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brunt EM, Kleiner DE, Doo E, Network NCR (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–965

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Falth M, Stindt J, Koniger C, Nassal M, Kubitz R, Sultmann H, Urban S (2014) Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146:1070–1083

    Article  CAS  PubMed  Google Scholar 

  • Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Mullhaupt B, Meier PJ, Pauli-Magnus C (2005) Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 43:536–543

    Article  CAS  PubMed  Google Scholar 

  • Osawa Y, Banno Y, Nagaki M, Brenner DA, Naiki T, Nozawa Y, Nakashima S, Moriwaki H (2001) TNF-alpha-induced sphingosine 1-phosphate inhibits apoptosis through a phosphatidylinositol 3-kinase/Akt pathway in human hepatocytes. J Immunol 167:173–180

    Article  CAS  PubMed  Google Scholar 

  • Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA (2005) Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 280:27879–27887

    Article  CAS  PubMed  Google Scholar 

  • Osawa Y, Seki E, Adachi M, Suetsugu A, Ito H, Moriwaki H, Seishima M, Nagaki M (2010) Role of acid sphingomyelinase of Kupffer cells in cholestatic liver injury in mice. Hepatology 51:237–245

    Article  CAS  PubMed  Google Scholar 

  • Otsuki M (2000) Pathophysiological role of cholecystokinin in humans. J Gastroenterol Hepatol 15(Suppl):D71–D83

    Article  CAS  PubMed  Google Scholar 

  • Painter JN, Savander M, Ropponen A, Nupponen N, Riikonen S, Ylikorkala O, Lehesjoki AE, Aittomaki K (2005) Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur J Hum Genet 13:435–439

    Article  CAS  PubMed  Google Scholar 

  • Pares A, Caballeria L, Rodes J (2006) Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic acid. Gastroenterology 130:715–720

    Article  CAS  PubMed  Google Scholar 

  • Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284:1365–1368

    Article  CAS  PubMed  Google Scholar 

  • Pauli-Magnus C, Lang T, Meier Y, Zodan-Marin T, Jung D, Breymann C, Zimmermann R, Kenngott S, Beuers U, Reichel C, Kerb R, Penger A, Meier PJ, Kullak-Ublick GA (2004) Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 14:91–102

    Article  CAS  PubMed  Google Scholar 

  • Pean N, Doignon I, Garcin I, Besnard A, Julien B, Liu B, Branchereau S, Spraul A, Guettier C, Humbert L, Schoonjans K, Rainteau D, Tordjmann T (2013) The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 58:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM (2002) 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45:3569–3572

    Article  CAS  PubMed  Google Scholar 

  • Pellicciari R, Costantino G, Camaioni E, Sadeghpour BM, Entrena A, Willson TM, Fiorucci S, Clerici C, Gioiello A (2004) Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid. J Med Chem 47:4559–4569

    Article  CAS  PubMed  Google Scholar 

  • Perino A, Pols TW, Nomura M, Stein S, Pellicciari R, Schoonjans K (2014) TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation. J Clin Invest 124:5424–5436

    Article  PubMed  PubMed Central  Google Scholar 

  • Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis 29:37–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poupon R (2012) Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin Res Hepatol Gastroenterol 36(Suppl 1):S3–12

    Article  CAS  PubMed  Google Scholar 

  • Prieto J, Garcia N, Marti-Climent JM, Penuelas I, Richter JA, Medina JF (1999) Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 117:167–172

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, Chiang JY (2015) Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta 1851:19–29

    Article  CAS  PubMed  Google Scholar 

  • Qiao L, Yacoub A, Studer E, Gupta S, Pei XY, Grant S, Hylemon PB, Dent P (2002) Inhibition of the MAPK and PI3K pathways enhances UDCA-induced apoptosis in primary rodent hepatocytes. Hepatology 35:779–789

    Article  CAS  PubMed  Google Scholar 

  • Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA (2008) The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci U S A 105:3891–3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R, Ullmer C, Knoefel WT, Herebian D, Mayatepek E, Haussinger D, Keitel V (2016) TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 65:487–501

    Article  CAS  PubMed  Google Scholar 

  • Reinehr R, Becker S, Keitel V, Eberle A, Grether-Beck S, Haussinger D (2005) Bile salt-induced apoptosis involves NADPH oxidase isoform activation. Gastroenterology 129:2009–2031

    Article  CAS  PubMed  Google Scholar 

  • Ridlon JM, Hylemon PB (2006) A potential role for resistant starch fermentation in modulating colonic bacterial metabolism and colon cancer risk. Cancer Biol Ther 5:273–274

    Article  CAS  PubMed  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  PubMed  Google Scholar 

  • Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Orlandi S, Sadeghpour B, Wang XX, Jiang T, Levi M, Pruzanski M, Adorini L (2010) Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 78:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ (1998a) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101:2790–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998b) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ 6:842–854

    Article  CAS  PubMed  Google Scholar 

  • Roggin KK, Papa EF, Kurkchubasche AG, Tracy TF Jr (2000) Kupffer cell inactivation delays repair in a rat model of reversible biliary obstruction. J Surg Res 90:166–173

    Article  CAS  PubMed  Google Scholar 

  • Rolo AP, Oliveira PJ, Moreno AJ, Palmeira CM (2000) Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapy. Toxicol Sci 57:177–185

    Article  CAS  PubMed  Google Scholar 

  • Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:1370174

    Article  CAS  Google Scholar 

  • Russell DW, Setchell KD (1992) Bile acid biosynthesis. Biochemistry 31:4737–4749

    Article  CAS  PubMed  Google Scholar 

  • Saini SP, Sonoda J, Xu L, Toma D, Uppal H, Mu Y, Ren S, Moore DD, Evans RM, Xie W (2004) A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 65:292–300

    Article  CAS  PubMed  Google Scholar 

  • Sambrotta M, Strautnieks S, Papouli E, Rushton P, Clark BE, Parry DA, Logan CV, Newbury LJ, Kamath BM, Ling S, Grammatikopoulos T, Wagner BE, Magee JC, Sokol RJ, Mieli-Vergani G, University of Washington Center for Mendelian G, Smith JD, Johnson CA, McClean P, Simpson MA, Knisely AS, Bull LN and Thompson RJ (2014) Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet 46:326–328

    Google Scholar 

  • Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, Saladin R, Schoonjans K, Pellicciari R, Auwerx J (2008) Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J Med Chem 51:1831–1841

    Article  CAS  PubMed  Google Scholar 

  • Schaap FG, van der Gaag NA, Gouma DJ, Jansen PL (2009) High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 49:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Schoemaker MH, Conde de la Rosa L, Buist-Homan M, Vrenken TE, Havinga R, Poelstra K, Haisma HJ, Jansen PL, Moshage H (2004) Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology 39:1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Setchell KD, Heubi JE, Shah S, Lavine JE, Suskind D, Al-Edreesi M, Potter C, Russell DW, O’Connell NC, Wolfe B, Jha P, Zhang W, Bove KE, Knisely AS, Hofmann AF, Rosenthal P, Bull LN (2013) Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology 144:945–955.e946. quiz e914–945

    Google Scholar 

  • Sewnath ME, Van Der Poll T, Ten Kate FJ, Van Noorden CJ, Gouma DJ (2002) Interleukin-1 receptor type I gene-deficient bile duct-ligated mice are partially protected against endotoxin. Hepatology 35:149–158

    Article  CAS  PubMed  Google Scholar 

  • Shneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH, Suchy FJ (1995) Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest 95:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shonsey EM, Wheeler J, Johnson M, He D, Falany CN, Falany J, Barnes S (2005) Synthesis of bile acid coenzyme a thioesters in the amino acid conjugation of bile acids. Methods Enzymol 400:360–373

    Article  CAS  PubMed  Google Scholar 

  • Slijepcevic D, Kaufman C, Wichers CG, Gilglioni EH, Lempp FA, Duijst S, de Waart DR, Oude Elferink RP, Mier W, Stieger B, Beuers U, Urban S, van de Graaf SF (2015) Impaired uptake of conjugated bile acids and hepatitis B virus preS1-binding in Na(+)-taurocholate cotransporting polypeptide knockout mice. Hepatology 62:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA et al (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75:451–462

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, Devereaux M, Khandwala R, O’Brien K (1993) Evidence for involvement of oxygen free radicals in bile acid toxicity to isolated rat hepatocytes. Hepatology 17:869–881

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, Winklhofer-Roob BM, Devereaux MW, McKim JM Jr (1995) Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology 109:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, Straka MS, Dahl R, Devereaux MW, Yerushalmi B, Gumpricht E, Elkins N, Everson G (2001) Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids. Pediatr Res 49:519–531

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, Dahl R, Devereaux MW, Yerushalmi B, Kobak GE, Gumpricht E (2005) Human hepatic mitochondria generate reactive oxygen species and undergo the permeability transition in response to hydrophobic bile acids. J Pediatr Gastroenterol Nutr 41:235–243

    Article  CAS  PubMed  Google Scholar 

  • Song KH, Li T, Owsley E, Strom S, Chiang JY (2009) Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spivey JR, Bronk SF, Gores GJ (1993) Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J Clin Invest 92:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A (2014) Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol 4:25–36

    Article  PubMed  Google Scholar 

  • Stahlberg D (1995) Effects of pregnenolone-16 alpha-carbonitrile on the metabolism of cholesterol in rat liver microsomes. Lipids 30:361–364

    Article  CAS  PubMed  Google Scholar 

  • Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR (2006) PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 38:515–597

    Article  CAS  PubMed  Google Scholar 

  • Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 98:3369–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stedman CA, Liddle C, Coulter SA, Sonoda J, Alvarez JG, Moore DD, Evans RM, Downes M (2005) Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci U S A 102:2063–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strautnieks SS, Kagalwalla AF, Tanner MS, Knisely AS, Bull L, Freimer N, Kocoshis SA, Gardiner RM, Thompson RJ (1997) Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am J Hum Genet 61:630–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S (2010) Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 688:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB (2012) Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55:267–276

    Article  CAS  PubMed  Google Scholar 

  • Teixeira J, Gil G (1991) Cloning, expression, and regulation of lithocholic acid 6 beta-hydroxylase. J Biol Chem 266:21030–21036

    CAS  PubMed  Google Scholar 

  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari A, Maiti P (2009) TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov Today 14:523–530

    Article  CAS  PubMed  Google Scholar 

  • Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83:633–671

    Article  CAS  PubMed  Google Scholar 

  • Van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL, Chambers J, Shevchuk V, Moore GE, Lammert F, Glantz AG, Mattsson LA, Whittaker J, Parker MG, White R, Williamson C (2007) Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 133:507–516

    Article  CAS  PubMed  Google Scholar 

  • Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C, Koster J, Ho-Mok K, Bootsma AH, Groen AK, Schaap FG, Oude Elferink RP, Waterham HR and Wanders RJ (2015) Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 61(1):260-267

    Google Scholar 

  • Verreault M, Kaeding J, Caron P, Trottier J, Grosse L, Houssin E, Paquet S, Perreault M, Barbier O (2010) Regulation of endobiotics glucuronidation by ligand-activated transcription factors: physiological function and therapeutic potential. Drug Metab Rev 42:110–122

    Article  CAS  PubMed  Google Scholar 

  • Vessey DA, Benfatto AM, Kempner ES (1987) Bile acid: CoASH ligases from Guinea pig and porcine liver microsomes. Purification and characterization. J Biol Chem 262:5360–5365

    CAS  PubMed  Google Scholar 

  • Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yang C, Chang JY, You P, Li Y, Jin C, Luo Y, Li X, McKeehan WL, Wang F (2014) Hepatocyte FRS2alpha is essential for the endocrine fibroblast growth factor to limit the amplitude of bile acid production induced by prandial activity. Curr Mol Med 14:703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, Adorini L, D’Agati VD, Levi J, Rosenberg A, Kopp JB, Gius DR, Saleem MA, Levi M (2016) G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol 27:1362–1378

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489

    Article  CAS  PubMed  Google Scholar 

  • Wheeler JB, Shaw DR, Barnes S (1997) Purification and characterization of a rat liver bile acid coenzyme a ligase from rat liver microsomes. Arch Biochem Biophys 348:15–24

    Article  CAS  PubMed  Google Scholar 

  • Woolbright BL, Jaeschke H (2012) Novel insight into mechanisms of cholestatic liver injury. World J Gastroenterol 18:4985–4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Francis H, Glaser S, Alpini G, LeSage G (2006) Bile acid interactions with cholangiocytes. World J Gastroenterol 12:3553–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashiki M, Kosaka Y, Nishimura A, Watanabe S, Nomoto M, Ichida F (1998) Analysis of serum cytokine levels in primary biliary cirrhosis patients and healthy adults. J Clin Lab Anal 12:77–82

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1:e00049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh HZ, Schteingart CD, Hagey LR, Ton-Nu HT, Bolder U, Gavrilkina MA, Steinbach JH, Hofmann AF (1997) Effect of side chain length on biotransformation, hepatic transport, and choleretic properties of chenodeoxycholyl homologues in the rodent: studies with dinorchenodeoxycholic acid, norchenodeoxycholic acid, and chenodeoxycholic acid. Hepatology 26:374–385

    Article  CAS  PubMed  Google Scholar 

  • Yerushalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ (2001) Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33:616–626

    Article  CAS  PubMed  Google Scholar 

  • Yoneno K, Hisamatsu T, Shimamura K, Kamada N, Ichikawa R, Kitazume MT, Mori M, Uo M, Namikawa Y, Matsuoka K, Sato T, Koganei K, Sugita A, Kanai T, Hibi T (2013) TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease. Immunology 139:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH (1986) Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterology 90:837–852

    Article  CAS  PubMed  Google Scholar 

  • Zein CO, Lindor KD (2010) Latest and emerging therapies for primary biliary cirrhosis and primary sclerosing cholangitis. Curr Gastroenterol Rep 12:13–22

    Article  PubMed  Google Scholar 

  • Zhang Y, Hong JY, Rockwell CE, Copple BL, Jaeschke H, Klaassen CD (2012) Effect of bile duct ligation on bile acid composition in mouse serum and liver. Liver Int 32:58–69

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Maxwell KN, Sezgin E, Lu M, Liang H, Hancock JF, Dial EJ, Lichtenberger LM, Levental I (2013) Bile acids modulate signaling by functional perturbation of plasma membrane domains. J Biol Chem 288:35660–35670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Wang X, Phung V, Lindhout DA, Mondal K, Hsu JY, Yang H, Humphrey M, Ding X, Arora T, Learned RM, DePaoli AM, Tian H, Ling L (2014) Separating Tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res 74:3306–3316

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L (2016) Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 63:914–929

    Article  CAS  PubMed  Google Scholar 

  • Zollner G, Trauner M (2008) Mechanisms of cholestasis. Clin Liver Dis 12:1–26. vii

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported in part by NIH grant 1R01DK102487-01 (T.L.), the National Center for Research Resources (5P20RR021940-07), and the National Institute of General Medical Sciences (8 P20 GM103549-07) of the National Institutes of Health (T.L.); NIH grants DK58379 (J.C.) and DK44442 (J.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiangang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, T., Chiang, J.Y.L. (2017). Bile Acid-Induced Liver Injury in Cholestasis. In: Ding, WX., Yin, XM. (eds) Cellular Injury in Liver Diseases. Cell Death in Biology and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-53774-0_7

Download citation

Publish with us

Policies and ethics