Skip to main content

Pathological Diagnosis of Inflammatory Bowel Disease

  • Chapter
  • First Online:
Inflammatory Bowel Disease

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

Treatment of inflammatory bowel disease (IBD) requires a multidisciplinary approach which relies heavily on pathology to subclassify the disease as ulcerative colitis (UC) or Crohn’s disease (CD), grade inflammatory activity, and assess for the presence of dysplasia. Despite the increasing use of molecular approaches by the modern pathologist, diagnosis and evaluation of IBD is achieved principally through microscopic examination of hematoxylin and eosin (H&E) stained tissue and gross examination of surgically resected specimens. However, as our understanding of IBD increases, there is likely to be an ever-increasing role of genetics in the IBD diagnosis and assessment. In this chapter, pathological diagnosis of IBD and how genetics may play an increasingly important role in IBD diagnosis and treatment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paterson JC, Watson SH. Paneth cell metaplasia in ulcerative colitis. Am J Pathol. 1961;38:243–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. D’Haens G, Geboes K, Peeters M, Baert F, Ectors N, Rutgeerts P. Patchy cecal inflammation associated with distal ulcerative colitis: a prospective endoscopic study. Am J Gastroenterol. 1997;92(8):1275–9.

    PubMed  Google Scholar 

  3. Ladefoged K, Munck LK, Jorgensen F, Engel P. Skip inflammation of the appendiceal orifice: a prospective endoscopic study. Scand J Gastroenterol. 2005;40(10):1192–6.

    Article  PubMed  Google Scholar 

  4. Yang SK, Jung HY, Kang GH, et al. Appendiceal orifice inflammation as a skip lesion in ulcerative colitis: an analysis in relation to medical therapy and disease extent. Gastrointest Endosc. 1999;49(6):743–7.

    Article  CAS  PubMed  Google Scholar 

  5. Washington K, Greenson JK, Montgomery E, et al. Histopathology of ulcerative colitis in initial rectal biopsy in children. Am J Surg Pathol. 2002;26(11):1441–9.

    Article  PubMed  Google Scholar 

  6. Markowitz J, Kahn E, Grancher K, Hyams J, Treem W, Daum F. Atypical rectosigmoid histology in children with newly diagnosed ulcerative colitis. Am J Gastroenterol. 1993;88(12):2034–7.

    CAS  PubMed  Google Scholar 

  7. Davila RE, Rajan E, Baron TH, et al. ASGE guideline: colorectal cancer screening and surveillance. Gastrointest Endosc. 2006;63(4):546–57.

    Article  PubMed  Google Scholar 

  8. Rubin DT, Turner JR. Surveillance of dysplasia in inflammatory bowel disease: the gastroenterologist-pathologist partnership. Clin Gastroenterol Hepatol. 2006;4(11):1309–13.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nature clinical practice. Gastroenterol Hepatol. 2006;3(7):390–407.

    CAS  Google Scholar 

  10. Liu JZ, Anderson CA. Genetic studies of Crohn’s disease: past, present and future. Best practice & research. Clin Gastroenterol. 2014;28(3):373–86.

    Google Scholar 

  11. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6.

    Article  CAS  PubMed  Google Scholar 

  12. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang C, Haritunians T, Okou DT, et al. Characterization of genetic loci that affect susceptibility to inflammatory bowel diseases in African Americans. Gastroenterology. 2015;149(6):1575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11.

    Article  CAS  PubMed  Google Scholar 

  16. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5):596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duerr RH, Taylor KD, Brant SR, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci U S A. 2011;108(23):9560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fairfax BP, Humburg P, Makino S, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science. 2014;343(6175):1246949.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Raine T, Liu JZ, Anderson CA, Parkes M, Kaser A. Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease. Gut. 2015;64(2):250–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ning K, Gettler K, Zhang W, et al. Improved integrative framework combining association data with gene expression features to prioritize Crohn’s disease genes. Hum Mol Genet. 2015;24(14):4147–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62(12):1795–805.

    Article  CAS  PubMed  Google Scholar 

  23. Worthey EA, Mayer AN, Syverson GD, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med Off J Am Coll Med Genet. 2011;13(3):255–62.

    Google Scholar 

  24. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McGovern DP, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology 2015; 149(5):1163–76.e1162.

    Google Scholar 

  26. Plevy S, Silverberg MS, Lockton S, et al. Combined serological, genetic, and inflammatory markers differentiate non-IBD, Crohn’s disease, and ulcerative colitis patients. Inflamm Bowel Dis. 2013;19(6):1139–48.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Begue B, Verdier J, Rieux-Laucat F, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am J Gastroenterol. 2011;106(8):1544–55.

    Article  CAS  PubMed  Google Scholar 

  28. Engelhardt KR, Shah N, Faizura-Yeop I, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131(3):825–30.

    Article  CAS  PubMed  Google Scholar 

  29. Glocker EO, Frede N, Perro M, et al. Infant colitis – it’s in the genes. Lancet. 2010;376(9748):1272.

    Article  PubMed  Google Scholar 

  30. Kaskas BA, Louis E, Hindorf U, et al. Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut. 2003;52(1):140–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet. 1990;336(8709):225–9.

    Article  CAS  PubMed  Google Scholar 

  32. Seidman EG. Clinical use and practical application of TPMT enzyme and 6-mercaptopurine metabolite monitoring in IBD. Rev Gastroenterol Disord. 2003;3(Suppl 1):S30–8.

    PubMed  Google Scholar 

  33. Haritunians T, Taylor KD, Targan SR, et al. Genetic predictors of medically refractory ulcerative colitis. Inflamm Bowel Dis. 2010;16(11):1830–40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Weber MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shen, L., Weber, C.R. (2017). Pathological Diagnosis of Inflammatory Bowel Disease. In: Cohen, R. (eds) Inflammatory Bowel Disease. Clinical Gastroenterology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53763-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53763-4_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53761-0

  • Online ISBN: 978-3-319-53763-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics