Skip to main content

Optical Amplifier Cognitive Gain Adjustment Methodology for Dynamic and Realistic Networks

  • Chapter
  • First Online:
Cognitive Technologies

Abstract

Optical amplifiers are essential devices in optical networks to recover the signals degraded from passive optical components attenuations such as fiber span and optical switches. However, optical amplifiers, usually based on erbium-doped fiber, are also the main noise contributors, reducing the signal quality. Given that noise depends on the amplifiers’ operating point, it is desirable to find their best operating point which may lead to the lowest degradation of the optical signal. In this work, we evaluate our proposed cognitive methodology for optical amplifier gain adjustment, relied on case-based reasoning. Realistic scenarios are considering, exploring networks with different number of amplifiers and span lengths per link. The results show an optical signal-to-noise ratio improvement when the cognitive methodology is applied for most cases, demonstrating the methodology robustness for networks with different characteristics in terms of topology and size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moura U, Garrich M, Carvalho H, Svolenski M, Andrade A, Cesar AC, Oliveira J, Conforti E (2016) Cognitive methodology for optical amplifier gain adjustment in dynamic dwdm networks. J Lightwave Technol 34:1971–1979

    Article  Google Scholar 

  2. Reis JD, Garrich M, Pataca DM, Diniz JCM, Rozental VN, Carvalho LHH, Magalhes EC, Moura U, Gonzalez NG, Oliveira JRF, Oliveira JCRF (2014) Flexible optical transmission systems for future networking. In: Telecommunications network strategy and planning symposium (networks), 2014 16th international, pp 1–6

    Google Scholar 

  3. Cugini F, Meloni G, Paolucci F, Sambo N, Secondini M, Gerardi L, Poti L, Castoldi P (2012) Demonstration of flexible optical network based on path computation element. J Lightwave Technol 30:727–733

    Article  Google Scholar 

  4. Franciscangelis C, Carvalho LHH, Reis JD, Parahyba VE, Simes FD, Pataca DM, Rosa ES, Rozental VN, Oliveira JRF, Gonzalez NG, Oliveira JCRF (2014) Network survivability field trial over brazilian legacy optical fiber links through advanced transponder reconfiguration. In: 2014 the European conference on optical communication (ECOC), pp 1–3

    Google Scholar 

  5. Carvalho LHH, Franciscangelis C, Duarte UR, Rozental VN, Reis JD, Fideles FB, Suzigan GJ, Simes FD, Parahyba VE, Gonzalez NG, Bordonalli AC, Oliveira JCRF (2014) Multidimensional optimization of optical spectral shaping for fiber nonlinearities mitigation in high baud-rate systems. In: 2014 the European conference on optical communication (ECOC), pp 1–3

    Google Scholar 

  6. de AS Diniz C, Garrich M, Suzigan GJ, Assine JS, Reis JD, de Oliveira JRF, Mello DAA (2015) Embedded system for optical spectral optimization based on a genetic algorithm. In: Microwave and optoelectronics conference (IMOC), 2015 SBMO/IEEE MTT-S international, pp 1–4

    Google Scholar 

  7. Choi HY, Liu L, Tsuritani T, Morita I (2013) Demonstration of ber-adaptive wson employing flexible transmitter/receiver with an extended openflow-based control plane. IEEE Photon Technol Lett 25(2):119–121

    Article  Google Scholar 

  8. Magalhães E, Garrich M, Carvalho H, Magalhães M, González N, Oliveira J, Bordonalli A, Oliveira J (2014) Global wss-based equalization strategies for sdn metropolitan mesh optical networks. In: European conference on optical communications (ECOC)

    Google Scholar 

  9. Wang X, Fei Y, Razo M, Fumagalli A, Garrich M (2015) Network-wide signal power control strategies in wdm networks. In: 2015 international conference on optical network design and modeling (ONDM). IEEE, pp 218–221

    Google Scholar 

  10. Nascimento VV, de Oliveira JC, Ribeiro VB, Bordonalli AC (2011) Dynamic gain equalization for erbium doped fiber amplifiers based on optoceramic sinusoidal filter cascade. Microw Opt Technol Lett 53(3):623–626

    Article  Google Scholar 

  11. de Moura UC, Oliveira JR, Oliveira JCR, Cesar AC (2013) Edfa adaptive gain control effect analysis over an amplifier cascade in a dwdm optical system. In: Microwave and optoelectronics conference (IMOC), 2013 SBMO/IEEE MTT-S international. IEEE, pp 1–5

    Google Scholar 

  12. Barboza DA, Bastos-Filho CJ, Martins-Filho JF, de Moura UC, de Oliveira JR et al (2013) Self-adaptive erbium-doped fiber amplifiers using machine learning. In: Microwave optoelectronics conference (IMOC), 2013 SBMO/IEEE MTT-S international. IEEE, pp 1–5

    Google Scholar 

  13. Oliveira JR, Caballero A, Magalhães E, Moura U, Borkowski R, Curiel G, Hirata A, Hecker L, Porto E, Zibar D et al (2013) Demonstration of edfa cognitive gain control via gmpls for mixed modulation formats in heterogeneous optical networks. In: Optical fiber communication conference. Optical Society of America, pp OW1H–2

    Google Scholar 

  14. Zervas GS, Simeonidou D (2010) Cognitive optical networks: need, requirements and architecture. In: 2010 12th international conference on transparent optical networks (ICTON). IEEE, pp 1–4

    Google Scholar 

  15. Mahmoud QH (2007) Front matter. Wiley, pp i–xxxii

    Google Scholar 

  16. Thomas RW, Friend DH, DaSilva L, Mackenzie AB et al (2006) Cognitive networks: adaptation and learning to achieve end-to-end performance objectives. IEEE Commun Mag 44(12):51–57

    Article  Google Scholar 

  17. Monroy IT, Zibar D, Gonzalez NG, Borkowski R (2011) Cognitive heterogeneous reconfigurable optical networks (chron): enabling technologies and techniques. In: Proceedings of ICTON, vol 11

    Google Scholar 

  18. Wei W, Wang C, Yu J (2012) Cognitive optical networks: key drivers, enabling techniques, and adaptive bandwidth services. IEEE Commun Mag 50(1):106–113

    Article  Google Scholar 

  19. Siracusa D, Salvadori E, Francescon A, Zanardi A, Angelou M, Klonidis D, Tomkos I, Sánchez D, Durán R, de Miguel I (2012) A control plane framework for future cognitive heterogeneous optical networks. In: 2012 14th international conference on transparent optical networks (ICTON). IEEE, pp 1–4

    Google Scholar 

  20. Tronco TR, Feres MM, César AC, de Lacerda Rocha M (2013) Self-configuration and self-healing for cognitive optical networks. J Microw Optoelectron Electromagn Appl (JMOe) 12:193–205

    Google Scholar 

  21. Tronco TR, Garrich M, César AC, Rocha MDL (2016) Cognitive algorithm using fuzzy reasoning for software-defined optical network. Photon Netw Commun 32(2):281–292

    Article  Google Scholar 

  22. Rodríguez I, Durán RJ, Siracusa D, de Miguel I, Francescon A, Aguado JC, Salvadori E, Lorenzo RM (2013) Minimization of the impact of the ted inaccuracy problem in pce-based networks by means of cognition. In: 39th European conference and exhibition on optical communication (ECOC 2013). IET, pp 1–3

    Google Scholar 

  23. Zervas G, Banias K, Rofoee BR, Amaya N, Simeonidou D (2012) Multi-core, multi-band and multi-dimensional cognitive optical networks: an architecture on demand approach. In: 2012 14th international conference on transparent optical networks (ICTON). IEEE, pp 1–4

    Google Scholar 

  24. Jiménez T, de Miguel I, Aguado J, Durán R, Merayo N, Fernández N, Sánchez D, Fernández P, Atallah N, Abril E et al (2011) Case-based reasoning (cbr) to estimate the q-factor in optical networks: an initial approach. In: 2011 16th European conference on networks and optical communications (NOC). IEEE, pp 181–184

    Google Scholar 

  25. Jiménez T, Aguado JC, de Miguel I, Durán RJ, Fernandez N, Angelou M, Sánchez D, Merayo N, Fernández P, Atallah N et al (2012) A cognitive system for fast quality of transmission estimation in core optical networks. In: Optical fiber communication conference. Optical Society of America, pp OW3A–5

    Google Scholar 

  26. Jiménez T, Aguado JC, De Miguel I, Durán RJ, Fernández N, Angelou M, Sánchez D, Merayo N, Fernández P, Atallah N et al (2012) Enhancing optical networks with cognition: case-based reasoning to estimate the quality of transmission. In: 2012 IEEE international multi-disciplinary conference on cognitive methods in situation awareness and decision support (CogSIMA). IEEE, pp 166–169

    Google Scholar 

  27. Caballero A, Aguado JC, Borkowski R, Saldaña S, Jiménez T, de Miguel I, Arlunno V, Durán RJ, Zibar D, Jensen JB et al (2012) Experimental demonstration of a cognitive quality of transmission estimator for optical communication systems. Opt Expr 20(26):B64–B70

    Article  Google Scholar 

  28. Jiménez T, Aguado JC, de Miguel I, Durán RJ, Angelou M, Merayo N, Fernández P, Lorenzo RM, Tomkos I, Abril EJ (2013) A cognitive quality of transmission estimator for core optical networks. J Lightwave Technol 31(6):942–951

    Article  Google Scholar 

  29. Caballero A, Borkowski R, Zibar D, Monroy IT (2013) Performance monitoring techniques supporting cognitive optical networking. In: 2013 15th international conference on transparent optical networks (ICTON). IEEE, pp 1–4

    Google Scholar 

  30. Borkowski R, Caballero A, Klonidis D, Kachris C, Francescon A, de Miguel I, Barroso RJD, Zibar D, Tomkos I, Tafur I (2014) Advanced modulation formats in cognitive optical networks: EU project chron demonstration. In: Optical fiber communication conference. Optical Society of America, pp W3H–1

    Google Scholar 

  31. Borkowski R, Durán RJ, Kachris C, Siracusa D, Caballero A, Fernández N, Klonidis D, Francescon A, Jiménez T, Aguado JC et al (2015) Cognitive optical network testbed: EU project chron [invited]. J Opt Commun Netw 7(2):A344–A355

    Article  Google Scholar 

  32. Duran R, Fernandez N, de Miguel I, Angelou M, Sánchez D, Aguado J, Jiménez T, Fernandez P, Merayo N, Atallah N et al (2011) Advantages of using cognition when solving impairment-aware virtual topology design problems. In: 2011 13th international conference on transparent optical networks (ICTON). IEEE, pp 1–4

    Google Scholar 

  33. Fernández N, Durán RJ, De Miguel I, Aguado JC, Jiménez T, Angelou M, Sánchez D, Fernández P, Merayo N, Atallah N et al (2012) Cognitive algorithm to solve the impairment-aware virtual topology design problem in reconfigurable optical networks. In: 2012 IEEE international multi-disciplinary conference on cognitive methods in situation awareness and decision support (CogSIMA). IEEE, pp 170–173

    Google Scholar 

  34. Tomkos I, Angelou M, Barroso RJD, de Miguel I, Toledo RML, Siracusa D, Salvadori E, Tymecki A, Ye Y, Monroy IT (2012) Next generation flexible and cognitive heterogeneous optical networks. The future internet. Springer, pp 225–236

    Google Scholar 

  35. de Miguel I, Durán RJ, Jiménez T, Fernández N, Aguado JC, Lorenzo RM, Caballero A, Monroy IT, Ye Y, Tymecki A et al (2013) Cognitive dynamic optical networks [invited]. J Opt Commun Netw 5(10):A107–A118

    Article  Google Scholar 

  36. Moura U, Garrich M, Carvalho H, Svolenski M, Andrade A, Margarido F, Csar AC, Conforti E, Oliveira J (2015) Sdn-enabled edfa gain adjustment cognitive methodology for dynamic optical networks. In: 41th European conference and exhibition on optical communication (ECOC 2015). IET

    Google Scholar 

  37. Agrell E, Karlsson M, Chraplyvy AR, Richardson DJ, Krummrich PM, Winzer P, Roberts K, Fischer JK, Savory SJ, Eggleton BJ, Secondini M, Kschischang FR, Lord A, Prat J, Tomkos I, Bowers JE, Srinivasan S, Brandt-Pearce M, Gisin N (2016) Roadmap of optical communications. J Opt 18(6):063002

    Article  Google Scholar 

  38. Govind PA (2002) Fiber-optic communication systems. Wiley, New York

    Google Scholar 

  39. Becker PM, Olsson AA, Simpson JR (1999) Erbium-doped fiber amplifiers: fundamentals and technology. Academic Press

    Google Scholar 

  40. Moura UC, Oliveira JR, Amgarten RL, Paiva GE, Oliveira JCF (2012) Caracterizador automatizado de máscara de potência de amplificadores ópticos para redes wdm reconfiguráveis. In: XXX Brazilian symposium on telecommunication, Brasilia, Brazil

    Google Scholar 

  41. Lumentum (2015) Multichannel erbium-doped fiber amplifier (EDFA)

    Google Scholar 

  42. de Moura UC, Oliveira JR, Cesar AC (2014) Roteamento de tráfego em redes wdm dinâmicas utilizando amplificadores ópticos com controle adaptativo de ganho. In: Anais do MOMAG 2014. IEEE, pp 7–12

    Google Scholar 

  43. Lopez De Mantaras R, McSherry D, Bridge D, Leake D, Smyth B, Craw S, Faltings B, Maher ML, Cox MT, Forbus K et al (2005) Retrieval, reuse, revision and retention in case-based reasoning. Knowl Eng Rev 20(03):215–240

    Article  Google Scholar 

  44. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45(3):35

    MATH  Google Scholar 

  45. T. U. of Adelaide (2013) The internet topology zoo

    Google Scholar 

  46. B. Hoppe (2009) Webwhompers

    Google Scholar 

  47. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uiara Celine de Moura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Moura, U.C., Garrich, M., Cesar, A.C., Reis, J.D., Oliveira, J., Conforti, E. (2017). Optical Amplifier Cognitive Gain Adjustment Methodology for Dynamic and Realistic Networks. In: Paradisi, A., Godoy Souza Mello, A., Lira Figueiredo, F., Carvalho Figueiredo, R. (eds) Cognitive Technologies. Telecommunications and Information Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53753-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53753-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53752-8

  • Online ISBN: 978-3-319-53753-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics