Skip to main content

The Charcot Foot

  • Chapter
  • First Online:
Complications in Foot and Ankle Surgery
  • 1696 Accesses

Abstract

Surgical management of a Charcot foot is mostly presented in low-level studies. Research in this area is lacking understandably due to its relatively low prevalence of the disease. Therefore, surgeons have to be responsible for making educated decisions based on the limited information. It is conceivable that sensorimotor along with autonomic neuropathy of any origin can result in development of neuroarthropathy. While many other causes have been reported, most of the Charcot arthropathies in the foot and ankle manifest in a diabetic population. This devastating condition not only results in foot deformities but also represents an end spectrum of the diabetes disease process, along with cardiovascular, neurological, and immunological manifestations. Additionally, the most significant risk factor associated with postoperative complications in this group is known to be the presence of peripheral neuropathy. Therefore, these patients are categorized in one of the highest medical-risk groups. Avoiding major complications is the single most important aspect in managing these patients, as complications are common even after a perfectly executed surgery. As reconstruction requires substantial time to recover and a considerable fraction of remaining life, the goal of the surgical procedure is to return these patients back to the previous activity level in order to maintain their quality of life. This may mean reconstructive surgery, a simple exostectomy soft tissue procedures or even amputation with prosthesis, depending on their medical and socioeconomic Status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber DB, Janus RB, Wade WH. Neuroarthropathy: an overuse injury of the shoulder in quadriplegia. J Spinal Cord Med. 1996;19(1):9–11.

    Article  CAS  PubMed  Google Scholar 

  2. Crim JR, Bassett LW, Gold RH, Mirra JM, Mikulics M, Dawson EG, et al. Spinal neuroarthropathy after traumatic paraplegia. AJNR Am J Neuroradiol. 1988;9(2):359–62.

    CAS  PubMed  Google Scholar 

  3. Heylen Y. Neuropathic arthropathy of the shoulder secondary to syringomyelia. J Belg Radiol. 1993;76(4):232–3.

    CAS  PubMed  Google Scholar 

  4. Nagano J, Tada K, Masatomi T, Horibe S. Arthropathy of the wrist in leprosy--what changes are caused by long-standing peripheral nerve palsy? Arch Orthop Trauma Surg. 1989;108(4):210–7.

    Article  CAS  PubMed  Google Scholar 

  5. Radhakrishnan K, Vijayan VP, Ashok PP, Sridharan R, Mousa ME. Syphilitic spinal neuroarthropathy with paraplegia. Clin Neurol Neurosurg. 1985;87(1):61–4.

    Article  CAS  PubMed  Google Scholar 

  6. Shibata T, Tada K, Hashizume C. The results of arthrodesis of the ankle for leprotic neuroarthropathy. J Bone Joint Surg Am. 1990;72(5):749–56.

    Article  CAS  PubMed  Google Scholar 

  7. Trepman E, Nihal A, Pinzur MS. Current topics review: Charcot neuroarthropathy of the foot and ankle. Foot Ankle Int. 2005;26(1):46–63.

    Article  PubMed  Google Scholar 

  8. Brodsky JW, Rouse AM. Exostectomy for symptomatic bony prominences in diabetic Charcot feet. Clin Orthop Relat Res. 1993;296:21–6.

    Google Scholar 

  9. Frykberg RG. Osteoarthropathy. Clin Podiatr Med Surg. 1987;4(2):351–9.

    CAS  PubMed  Google Scholar 

  10. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43.

    Article  PubMed  Google Scholar 

  11. Rosenberg CS. Wound healing in the patient with diabetes mellitus. Nurs Clin North Am. 1990;25(1):247–61.

    CAS  PubMed  Google Scholar 

  12. Siitonen OI, Niskanen LK, Laakso M, Siitonen JT, Pyorala K. Lower-extremity amputations in diabetic and nondiabetic patients. A population-based study in eastern Finland. Diabetes Care. 1993;16(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  13. Van Damme H, Limet R. Amputation in diabetic patients. Clin Podiatr Med Surg. 2007;24(3):569–82.

    Article  PubMed  Google Scholar 

  14. Addolorato G, Capristo E, Greco AV, Stefanini GF, Gasbarrini G. Influence of chronic alcohol abuse on body weight and energy metabolism: is excess ethanol consumption a risk factor for obesity or malnutrition? J Intern Med. 1998;244(5):387–95.

    Article  CAS  PubMed  Google Scholar 

  15. Pinzur MS, Sage R, Stuck R, Kaminsky S, Zmuda A. A treatment algorithm for neuropathic (Charcot) midfoot deformity. Foot Ankle. 1993;14(4):189–97.

    Article  CAS  PubMed  Google Scholar 

  16. Beard JD. Should we save critically ischaemic legs at any cost? Acta Chir Belg. 2008;108(6):651–5.

    Article  CAS  PubMed  Google Scholar 

  17. Cheshire NJ, Wolfe JH, Noone MA, Davies L, Drummond M. The economics of femorocrural reconstruction for critical leg ischemia with and without autologous vein. J Vasc Surg. 1992;15(1):167–74. discussion 74-5

    Article  CAS  PubMed  Google Scholar 

  18. Driver VR, Fabbi M, Lavery LA, Gibbons G. The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg. 2010;52(3 Suppl):17S–22S.

    Article  PubMed  Google Scholar 

  19. Gupta SK, Veith FJ, Ascer E, Flores SA, Gliedman ML. Cost factors in limb-threatening ischaemia due to infrainguinal arteriosclerosis. Eur J Vasc Surg. 1988;2(3):151–4.

    Article  CAS  PubMed  Google Scholar 

  20. Harrington EB, Harrington ME, Schanzer H, Haimov M. End-stage renal disease--is infrainguinal limb revascularization justified? J Vasc Surg. 1990;12(6):691–5. discussion 5–6

    Article  CAS  PubMed  Google Scholar 

  21. Johnson BL, Glickman MH, Bandyk DF, Esses GE. Failure of foot salvage in patients with end-stage renal disease after surgical revascularization. J Vasc Surg. 1995;22(3):280–5. discussion 5–6

    Article  CAS  PubMed  Google Scholar 

  22. Korn P, Hoenig SJ, Skillman JJ, Kent KC. Is lower extremity revascularization worthwhile in patients with end-stage renal disease? Surgery. 2000;128(3):472–9.

    Article  CAS  PubMed  Google Scholar 

  23. Panayiotopoulos YP, Tyrrell MR, Arnold FJ, Korzon-Burakowska A, Amiel SA, Taylor PR. Results and cost analysis of distal [crural/pedal] arterial revascularisation for limb salvage in diabetic and non-diabetic patients. Diabet Med. 1997;14(3):214–20.

    Article  CAS  PubMed  Google Scholar 

  24. Perler BA. Cost-efficacy issues in the treatment of peripheral vascular disease: primary amputation or revascularization for limb-threatening ischemia. J Vasc Interv Radiol. 1995;6(6 Pt 2 Suppl):111S–5S.

    Article  CAS  PubMed  Google Scholar 

  25. Raviola CA, Nichter LS, Baker JD, Busuttil RW, Machleder HI, Moore WS. Cost of treating advanced leg ischemia. Bypass graft vs primary amputation. Arch Surg. 1988;123(4):495–6.

    Article  CAS  PubMed  Google Scholar 

  26. Singh S, Evans L, Datta D, Gaines P, Beard JD. The costs of managing lower limb-threatening ischaemia. Eur J Vasc Endovasc Surg. 1996;12(3):359–62.

    Article  CAS  PubMed  Google Scholar 

  27. Taylor Jr LM, Hamre D, Dalman RL, Porter JM. Limb salvage vs amputation for critical ischemia. The role of vascular surgery. Arch Surg. 1991;126(10):1251–7. discussion 7–8

    Article  PubMed  Google Scholar 

  28. Shigematsu H. Epidemiology from the Trans Atlantic Inter-Society Consensus Group Guidelines II. Nihon Geka Gakkai zasshi. 2007;108(4):171–5.

    PubMed  Google Scholar 

  29. Second European Consensus Document on chronic critical leg ischemia. Circulation. 1991;84(4 Suppl):IV1–26.

    Google Scholar 

  30. Jupiter DC, Thorud JC, Buckley CJ, Shibuya N. The impact of foot ulceration and amputation on mortality in diabetic patients. I: from ulceration to death, a systematic review. Int Wound J. 2015;13(5):892–903.

    Article  PubMed  Google Scholar 

  31. Gazis A, Pound N, Macfarlane R, Treece K, Game F, Jeffcoate W. Mortality in patients with diabetic neuropathic osteoarthropathy (Charcot foot). Diabet Med. 2004;21(11):1243–6.

    Article  CAS  PubMed  Google Scholar 

  32. Baele HR, Piotrowski JJ, Yuhas J, Anderson C, Alexander JJ. Infrainguinal bypass in patients with end-stage renal disease. Surgery. 1995;117(3):319–24.

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez LA, Goldsmith J, Rivers SP, Panetta TF, Wengerter KR, Veith FJ. Limb salvage surgery in end stage renal disease: is it worthwhile? J Cardiovasc Surg. 1992;33(3):344–8.

    CAS  Google Scholar 

  34. Lavery LA, Hunt NA, Ndip A, Lavery DC, Van Houtum W, Boulton AJ. Impact of chronic kidney disease on survival after amputation in individuals with diabetes. Diabetes Care. 2010;33(11):2365–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Humphers J, Shibuya N, Fluhman BL, Jupiter D. The impact of glycosylated hemoglobin and diabetes mellitus on postoperative wound healing complications and infection following foot and ankle surgery. J Am Podiatr Med Assoc. 2014;104(4):320–9.

    Article  PubMed  Google Scholar 

  36. Jupiter DC, Humphers JM, Shibuya N. Trends in postoperative infection rates and their relationship to glycosylated hemoglobin levels in diabetic patients undergoing foot and ankle surgery. J Foot Ankle Surg. 2014;53(3):307–11.

    Article  PubMed  Google Scholar 

  37. Shibuya N, Humphers JM, Fluhman BL, Jupiter DC. Factors associated with nonunion, delayed union, and malunion in foot and ankle surgery in diabetic patients. J Foot Ankle Surg. 2013;52(2):207–11.

    Article  PubMed  Google Scholar 

  38. Lowery NJ, Woods JB, Armstrong DG, Wukich DK. Surgical management of Charcot neuroarthropathy of the foot and ankle: a systematic review. Foot Ankle Int. 2012;33(2):113–21.

    Article  PubMed  Google Scholar 

  39. La Fontaine J, Shibuya N, Sampson HW, Valderrama P. Trabecular quality and cellular characteristics of normal, diabetic, and charcot bone. J Foot Ankle Surg. 2011;50(6):648–53.

    Article  PubMed  Google Scholar 

  40. Armstrong DG, Lavery LA. Elevated peak plantar pressures in patients who have Charcot arthropathy. J Bone Joint Surg Am. 1998;80(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  41. Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65(5):1271–81.

    Article  CAS  PubMed  Google Scholar 

  42. Bao XJ, Liu FY, Lu S, Han Q, Feng M, Wei JJ, et al. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model. Int J Mol Med. 2013;31(5):1087–96.

    Article  CAS  PubMed  Google Scholar 

  43. Canzi L, Castellaneta V, Navone S, Nava S, Dossena M, Zucca I, et al. Human skeletal muscle stem cell antiinflammatory activity ameliorates clinical outcome in amyotrophic lateral sclerosis models. Mol Med. 2012;18:401–11.

    Article  CAS  PubMed  Google Scholar 

  44. Roukis TS, Zgonis T. The management of acute Charcot fracture-dislocations with the Taylor’s spatial external fixation system. Clin Podiatr Med Surg. 2006;23(2):467–83.

    Article  PubMed  Google Scholar 

  45. Illgner U, Budny T, Frohne I, Osada N, Siewe J, Wetz HH. Clinical benefit and improvement of activity level after reconstruction surgery of Charcot feet using external fixation: 24-months results of 292 feet. BMC Musculoskelet Disord. 2014;15:392.

    Google Scholar 

  46. Lamm BM, Gottlieb HD, Paley D. A two-stage percutaneous approach to charcot diabetic foot reconstruction. J Foot Ankle Surg. 2010;49(6):517–22.

    Article  PubMed  Google Scholar 

  47. Pinzur MS. Neutral ring fixation for high-risk nonplantigrade Charcot midfoot deformity. Foot Ankle Int. 2007;28(9):961–6.

    Article  PubMed  Google Scholar 

  48. DeVries JG, Berlet GC, Hyer CF. A retrospective comparative analysis of Charcot ankle stabilization using an intramedullary rod with or without application of circular external fixator–utilization of the Retrograde Arthrodesis Intramedullary Nail database. J Foot Ankle Surg. 2012;51(4):420–5.

    Article  PubMed  Google Scholar 

  49. Wukich DK, Belczyk RJ, Burns PR, Frykberg RG. Complications encountered with circular ring fixation in persons with diabetes mellitus. Foot Ankle Int. 2008;29(10):994–1000.

    Article  PubMed  Google Scholar 

  50. Jude EB, Selby PL, Burgess J, Lilleystone P, Mawer EB, Page SR, et al. Bisphosphonates in the treatment of Charcot neuroarthropathy: a double-blind randomised controlled trial. Diabetologia. 2001;44(11):2032–7.

    Article  CAS  PubMed  Google Scholar 

  51. Pakarinen TK, Laine HJ, Maenpaa H, Mattila P, Lahtela J. The effect of zoledronic acid on the clinical resolution of Charcot neuroarthropathy: a pilot randomized controlled trial. Diabetes Care. 2011;34(7):1514–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pitocco D, Ruotolo V, Caputo S, Mancini L, Collina CM, Manto A, et al. Six-month treatment with alendronate in acute Charcot neuroarthropathy: a randomized controlled trial. Diabetes Care. 2005;28(5):1214–5.

    Article  CAS  PubMed  Google Scholar 

  53. Shah NS, De SD. Comparative analysis of uniplanar external fixator and retrograde intramedullary nailing for ankle arthrodesis in diabetic Charcot’s neuroarthropathy. Indian J Orthop. 2011;45(4):359–64.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hockenbury RT, Gruttadauria M, McKinney I. Use of implantable bone growth stimulation in Charcot ankle arthrodesis. Foot Ankle Int. 2007;28(9):971–6.

    Article  PubMed  Google Scholar 

  55. Hanft JR, Goggin JP, Landsman A, Surprenant M. The role of combined magnetic field bone growth stimulation as an adjunct in the treatment of neuroarthropathy/Charcot joint: an expanded pilot study. J Foot Ankle Surg. 1998;37(6):510–5. discussion 50–51

    Article  CAS  PubMed  Google Scholar 

  56. Dayton P, DeVries JG, Landsman A, Meyr A, Schweinberger M. American college of foot and ankle surgeons' clinical consensus statement: perioperative prophylactic antibiotic use in clean elective foot surgery. J Foot Ankle Surg. 2015;54(2):273–9.

    Article  PubMed  Google Scholar 

  57. Cataife G, Weinberg DA, Wong HH, Kahn KL. The effect of Surgical Care Improvement Project (SCIP) compliance on surgical site infections (SSI). Med Care. 2014;52(2 Suppl 1):S66–73.

    Article  PubMed  Google Scholar 

  58. Shibuya N, Schinke TL, Canales MB, Yu GV. Effect of cryotherapy devices in the postoperative setting. J Am Podiatr Med Assoc. 2007;97(6):439–46.

    Article  PubMed  Google Scholar 

  59. Lindstrom D, Sadr Azodi O, Wladis A, Tonnesen H, Linder S, Nasell H, et al. Effects of a perioperative smoking cessation intervention on postoperative complications: a randomized trial. Ann Surg. 2008;248(5):739–45.

    Article  PubMed  Google Scholar 

  60. Nasell H, Adami J, Samnegard E, Tonnesen H, Ponzer S. Effect of smoking cessation intervention on results of acute fracture surgery: a randomized controlled trial. J Bone Joint Surg Am. 2010;92(6):1335–42.

    Article  PubMed  Google Scholar 

  61. Burkiewicz CJ, Guadagnin FA, Skare TL, do Nascimento MM, Servin SC, de Souza GD. Vitamin D and skin repair: a prospective, double-blind and placebo controlled study in the healing of leg ulcers. Rev Col Brasileiro de Cirurgioes. 2012;39(5):401–7.

    Article  Google Scholar 

  62. Blass SC, Goost H, Tolba RH, Stoffel-Wagner B, Kabir K, Burger C, et al. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: a PRCT. Clin Nutr. 2012;31(4):469–75.

    Article  CAS  PubMed  Google Scholar 

  63. Desneves KJ, Todorovic BE, Cassar A, Crowe TC. Treatment with supplementary arginine, vitamin C and zinc in patients with pressure ulcers: a randomised controlled trial. Clin Nutr. 2005;24(6):979–87.

    Article  CAS  PubMed  Google Scholar 

  64. Neiva RF, Al-Shammari K, Nociti Jr FH, Soehren S, Wang HL. Effects of vitamin-B complex supplementation on periodontal wound healing. J Periodontol. 2005;76(7):1084–91.

    Article  CAS  PubMed  Google Scholar 

  65. Frias Soriano L, Lage Vazquez MA, Maristany CP, Xandri Graupera JM, Wouters-Wesseling W, Wagenaar L. The effectiveness of oral nutritional supplementation in the healing of pressure ulcers. J Wound Care. 2004;13(8):319–22.

    Article  CAS  PubMed  Google Scholar 

  66. Lischer Ch J, Koller U, Geyer H, Mulling C, Schulze J, Ossent P. Effect of therapeutic dietary biotin on the healing of uncomplicated sole ulcers in dairy cattle–a double blinded controlled study. Vet J. 2002;163(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  67. van Anholt RD, Sobotka L, Meijer EP, Heyman H, Groen HW, Topinkova E, et al. Specific nutritional support accelerates pressure ulcer healing and reduces wound care intensity in non-malnourished patients. Nutrition. 2010;26(9):867–72.

    Article  PubMed  Google Scholar 

  68. Lee SK, Posthauer ME, Dorner B, Redovian V, Maloney MJ. Pressure ulcer healing with a concentrated, fortified, collagen protein hydrolysate supplement: a randomized controlled trial. Adv Skin Wound Care. 2006;19(2):92–6.

    Article  PubMed  Google Scholar 

  69. Collins CE, Kershaw J, Brockington S. Effect of nutritional supplements on wound healing in home-nursed elderly: a randomized trial. Nutrition. 2005;21(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  70. Snyderman CH, Kachman K, Molseed L, Wagner R, D'Amico F, Bumpous J, et al. Reduced postoperative infections with an immune-enhancing nutritional supplement. Laryngoscope. 1999;109(6):915–21.

    Article  CAS  PubMed  Google Scholar 

  71. Lavery LA, Higgins KR, La Fontaine J, Zamorano RG, Constantinides GP, Kim PJ. Randomised clinical trial to compare total contact casts, healing sandals and a shear-reducing removable boot to heal diabetic foot ulcers. Int Wound J. 2014;12(6):710–5.

    Article  PubMed  Google Scholar 

  72. Ramanujam CL, Zgonis T. Versatility of intrinsic muscle flaps for the diabetic Charcot foot. Clin Podiatr Med Surg. 2012;29(2):323–6.

    Article  PubMed  Google Scholar 

  73. Ramanujam CL, Stapleton JJ, Kilpadi KL, Rodriguez RH, Jeffries LC, Zgonis T. Split-thickness skin grafts for closure of diabetic foot and ankle wounds: a retrospective review of 83 patients. Foot Ankle Spec. 2010;3(5):231–40.

    Article  PubMed  Google Scholar 

  74. Rosenblum BI, Giurini JM, Miller LB, Chrzan JS, Habershaw GM. Neuropathic ulcerations plantar to the lateral column in patients with Charcot foot deformity: a flexible approach to limb salvage. J Foot Ankle Surg. 1997;36(5):360–3.

    Article  CAS  PubMed  Google Scholar 

  75. Alblowi J, Kayal RA, Siqueira M, McKenzie E, Krothapalli N, McLean J, et al. High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol. 2009;175(4):1574–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beam HA, Parsons JR, Lin SS. The effects of blood glucose control upon fracture healing in the BB Wistar rat with diabetes mellitus. J Orthop Res. 2002;20(6):1210–6.

    Article  CAS  PubMed  Google Scholar 

  77. Black CT, Hennessey PJ, Ford EG, Andrassy RJ. Protein glycosylation and collagen metabolism in normal and diabetic rats. J Surg Res. 1989;47(3):200–2.

    Article  CAS  PubMed  Google Scholar 

  78. Coords M, Breitbart E, Paglia D, Kappy N, Gandhi A, Cottrell J, et al. The effects of low-intensity pulsed ultrasound upon diabetic fracture healing. J Orthop Res. 2011;29(2):181–8.

    Article  PubMed  Google Scholar 

  79. Follak N, Kloting I, Merk H. Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes Metab Res Rev. 2005;21(3):288–96.

    Article  PubMed  Google Scholar 

  80. Follak N, Kloting I, Wolf E, Merk H. Improving metabolic control reverses the histomorphometric and biomechanical abnormalities of an experimentally induced bone defect in spontaneously diabetic rats. Calcif Tissue Int. 2004;74(6):551–60.

    Article  CAS  PubMed  Google Scholar 

  81. Follak N, Kloting I, Wolf E, Merk H. Histomorphometric evaluation of the influence of the diabetic metabolic state on bone defect healing depending on the defect size in spontaneously diabetic BB/OK rats. Bone. 2004;35(1):144–52.

    Article  CAS  PubMed  Google Scholar 

  82. Follak N, Kloting L, Wolf E, Merk H. Delayed remodeling in the early period of fracture healing in spontaneously diabetic BB/OK rats depending on the diabetic metabolic state. Histol Histopathol. 2004;19(2):473–86.

    CAS  PubMed  Google Scholar 

  83. Gandhi A, Beam HA, O'Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone. 2005;37(4):482–90.

    Article  CAS  PubMed  Google Scholar 

  84. Gandhi A, Doumas C, O'Connor JP, Parsons JR, Lin SS. The effects of local platelet rich plasma delivery on diabetic fracture healing. Bone. 2006;38(4):540–6.

    Article  CAS  PubMed  Google Scholar 

  85. Gandhi A, Liporace F, Azad V, Mattie J, Lin SS. Diabetic fracture healing. Foot Ankle Clin. 2006;11(4):805–24.

    Article  PubMed  Google Scholar 

  86. Gebauer GP, Lin SS, Beam HA, Vieira P, Parsons JR. Low-intensity pulsed ultrasound increases the fracture callus strength in diabetic BB Wistar rats but does not affect cellular proliferation. J Orthop Res. 2002;20(3):587–92.

    Article  PubMed  Google Scholar 

  87. Goto S, Fujii H, Kono K, Nakai K, Hamada Y, Yamato H, et al. Carvedilol ameliorates low-turnover bone disease in non-obese type 2 diabetes. Am J Nephrol. 2011;34(3):281–90.

    Article  CAS  PubMed  Google Scholar 

  88. Hamada Y, Kitazawa S, Kitazawa R, Fujii H, Kasuga M, Fukagawa M. Histomorphometric analysis of diabetic osteopenia in streptozotocin-induced diabetic mice: a possible role of oxidative stress. Bone. 2007;40(5):1408–14.

    Article  CAS  PubMed  Google Scholar 

  89. Hamada Y, Kitazawa S, Kitazawa R, Kono K, Goto S, Komaba H, et al. The effects of the receptor for advanced glycation end products (RAGE) on bone metabolism under physiological and diabetic conditions. Endocrine. 2010;38(3):369–76.

    Article  CAS  PubMed  Google Scholar 

  90. Kayal RA, Alblowi J, McKenzie E, Krothapalli N, Silkman L, Gerstenfeld L, et al. Diabetes causes the accelerated loss of cartilage during fracture repair which is reversed by insulin treatment. Bone. 2009;44(2):357–63.

    Article  CAS  PubMed  Google Scholar 

  91. Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, et al. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res. 2007;22(4):560–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lange J, Barz T, Ekkernkamp A, Kloting I, Follak N. Gene expression profile in bone of diabetes-prone BB/OK rats fed a high-fat diet. Genes Nutr. 2012;8(1):99–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144(1):346–52.

    Article  CAS  PubMed  Google Scholar 

  94. Macey LR, Kana SM, Jingushi S, Terek RM, Borretos J, Bolander ME. Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am. 1989;71(5):722–33.

    Article  CAS  PubMed  Google Scholar 

  95. Mathey J, Horcajada-Molteni MN, Chanteranne B, Picherit C, Puel C, Lebecque P, et al. Bone mass in obese diabetic Zucker rats: influence of treadmill running. Calcif Tissue Int. 2002;70(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  96. Ogasawara A, Nakajima A, Nakajima F, Goto K, Yamazaki M. Molecular basis for affected cartilage formation and bone union in fracture healing of the streptozotocin-induced diabetic rat. Bone. 2008;43(5):832–9.

    Article  CAS  PubMed  Google Scholar 

  97. Santana RB, Xu L, Chase HB, Amar S, Graves DT, Trackman PC. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes. 2003;52(6):1502–10.

    Article  CAS  PubMed  Google Scholar 

  98. Topping RE, Bolander ME, Balian G. Type X collagen in fracture callus and the effects of experimental diabetes. Clin Orthop Relat Res. 1994;308:220–8.

    Google Scholar 

  99. Tyndall WA, Beam HA, Zarro C, O'Connor JP, Lin SS. Decreased platelet derived growth factor expression during fracture healing in diabetic animals. Clin Orthop Relat Res. 2003;408:319–30.

    Article  Google Scholar 

  100. Perlman MH, Thordarson DB. Ankle fusion in a high risk population: an assessment of nonunion risk factors. Foot Ankle Int. 1999;20(8):491–6.

    Article  CAS  PubMed  Google Scholar 

  101. Bibbo C, Lin SS, Beam HA, Behrens FF. Complications of ankle fractures in diabetic patients. Orthop Clin North Am. 2001;32(1):113–33.

    Article  CAS  PubMed  Google Scholar 

  102. Blotter RH, Connolly E, Wasan A, Chapman MW. Acute complications in the operative treatment of isolated ankle fractures in patients with diabetes mellitus. Foot Ankle Int. 1999;20(11):687–94.

    Article  CAS  PubMed  Google Scholar 

  103. Connolly JF, Csencsitz TA. Limb threatening neuropathic complications from ankle fractures in patients with diabetes. Clin Orthop Relat Res. 1998;348:212–9.

    Article  Google Scholar 

  104. Costigan W, Thordarson DB, Debnath UK. Operative management of ankle fractures in patients with diabetes mellitus. Foot Ankle Int. 2007;28(1):32–7.

    Article  PubMed  Google Scholar 

  105. Jones KB, Maiers-Yelden KA, Marsh JL, Zimmerman MB, Estin M, Saltzman CL. Ankle fractures in patients with diabetes mellitus. J Bone Joint Surg (Br). 2005;87(4):489–95.

    Article  CAS  Google Scholar 

  106. Kristiansen B. Ankle and foot fractures in diabetics provoking neuropathic joint changes. Acta Orthop Scand. 1980;51(6):975–9.

    Article  CAS  PubMed  Google Scholar 

  107. Prisk VR, Wukich DK. Ankle fractures in diabetics. Foot Ankle Clin. 2006;11(4):849–63.

    Article  PubMed  Google Scholar 

  108. Tang SY, Vashishth D. Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone. 2010;46(1):148–54.

    Article  CAS  PubMed  Google Scholar 

  109. Mehta SK, Breitbart EA, Berberian WS, Liporace FA, Lin SS. Bone and wound healing in the diabetic patient. Foot Ankle Clin. 2010;15(3):411–37.

    Article  PubMed  Google Scholar 

  110. Shibuya N, Humphers JM, Fluhman BL, Jupiter DC. Factors associated with nonunion, delayed union, and malunion in foot and ankle surgery in diabetic patients. J Foot Ankle Surg. 2013;52(2):207–11.

    Article  PubMed  Google Scholar 

  111. La Fontaine J, Harkless LB, Sylvia VL, Carnes D, Heim-Hall J, Jude E. Levels of endothelial nitric oxide synthase and calcitonin gene-related peptide in the Charcot foot: a pilot study. J Foot Ankle Surg. 2008;47(5):424–9.

    Article  PubMed  Google Scholar 

  112. Shibuya N, La Fontaine J, Frania SJ. Alcohol-induced neuroarthropathy in the foot: a case series and review of literature. J Foot Ankle Surg. 2008;47(2):118–24.

    Article  PubMed  Google Scholar 

  113. Jeffcoate WJ. Theories concerning the pathogenesis of the acute charcot foot suggest future therapy. Curr Diab Rep. 2005;5(6):430–5.

    Article  PubMed  Google Scholar 

  114. Sinacore DR, Hastings MK, Bohnert KL, Fielder FA, Villareal DT, Blair 3rd VP, et al. Inflammatory osteolysis in diabetic neuropathic (Charcot) arthropathies of the foot. Phys Ther. 2008;88(11):1399–407.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zaidi M. Neural surveillance of skeletal homeostasis. Cell Metab. 2005;1(4):219–21.

    Article  CAS  PubMed  Google Scholar 

  116. Irie K, Hara-Irie F, Ozawa H, Yajima T. Calcitonin gene-related peptide (CGRP)-containing nerve fibers in bone tissue and their involvement in bone remodeling. Microsc Res Tech. 2002;58(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  117. Young MJ, Marshall A, Adams JE, Selby PL, Boulton AJ. Osteopenia, neurological dysfunction, and the development of Charcot neuroarthropathy. Diabetes Care. 1995;18(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  118. Alazraki N, Dalinka MK, Berquist TH, Daffner RJ, De Smet AA, El-Khoury GY, et al. Imaging diagnosis of osteomyelitis in patients with diabetes mellitus. American College of Radiology. ACR Appropriateness Criteria. Radiology. 2000;215:303–10.

    PubMed  Google Scholar 

  119. Michail M, Jude E, Liaskos C, Karamagiolis S, Makrilakis K, Dimitroulis D, et al. The performance of serum inflammatory markers for the diagnosis and follow-up of patients with osteomyelitis. Int J Low Extrem Wounds. 2013;12(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  120. Shen CJ, Wu MS, Lin KH, Lin WL, Chen HC, Wu JY, et al. The use of procalcitonin in the diagnosis of bone and joint infection: a systemic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2013;32(6):807–14.

    Article  CAS  PubMed  Google Scholar 

  121. Alvaro-Afonso FJ, Lazaro-Martinez JL, Aragon-Sanchez FJ, Garcia-Morales E, Carabantes-Alarcon D, Molines-Barroso RJ. Does the location of the ulcer affect the interpretation of the probe-to-bone test in the diagnosis of osteomyelitis in diabetic foot ulcers? Diabet Med. 2014;31(1):112–3.

    Article  CAS  PubMed  Google Scholar 

  122. Mutluoglu M, Uzun G, Sildiroglu O, Turhan V, Mutlu H, Yildiz S. Performance of the probe-to-bone test in a population suspected of having osteomyelitis of the foot in diabetes. J Am Podiatr Med Assoc. 2012;102(5):369–73.

    Article  PubMed  Google Scholar 

  123. Aragon-Sanchez J, Lipsky BA, Lazaro-Martinez JL. Diagnosing diabetic foot osteomyelitis: is the combination of probe-to-bone test and plain radiography sufficient for high-risk inpatients? Diabet Med. 2011;28(2):191–4.

    Article  CAS  PubMed  Google Scholar 

  124. Lavery LA, Armstrong DG, Peters EJ, Lipsky BA. Probe-to-bone test for diagnosing diabetic foot osteomyelitis: reliable or relic? Diabetes Care. 2007;30(2):270–4.

    Article  PubMed  Google Scholar 

  125. Grayson ML, Gibbons GW, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers. A clinical sign of underlying osteomyelitis in diabetic patients. JAMA. 1995;273(9):721–3.

    Article  CAS  PubMed  Google Scholar 

  126. Lazaro-Martinez JL, Aragon-Sanchez J, Garcia-Morales E. Antibiotics versus conservative surgery for treating diabetic foot osteomyelitis: a randomized comparative trial. Diabetes Care. 2014;37(3):789–95.

    Article  PubMed  Google Scholar 

  127. Ragnarson Tennvall G, Apelqvist J. Health-related quality of life in patients with diabetes mellitus and foot ulcers. J Diabetes Complicat. 2000;14(5):235–41.

    Article  CAS  PubMed  Google Scholar 

  128. Pakarinen TK, Laine HJ, Maenpaa H, Mattila P, Lahtela J. Long-term outcome and quality of life in patients with Charcot foot. Foot Ankle Surg. 2009;15(4):187–91.

    Article  PubMed  Google Scholar 

  129. Sochocki MP, Verity S, Atherton PJ, Huntington JL, Sloan JA, Embil JM, et al. Health related quality of life in patients with Charcot arthropathy of the foot and ankle. Foot Ankle Surg. 2008;14(1):11–5.

    Article  PubMed  Google Scholar 

  130. Busse JW, Jacobs CL, Swiontkowski MF, Bosse MJ, Bhandari M. Complex limb salvage or early amputation for severe lower-limb injury: a meta-analysis of observational studies. J Orthop Trauma. 2007;21(1):70–6.

    Article  PubMed  Google Scholar 

  131. Saddawi-Konefka D, Kim HM, Chung KC. A systematic review of outcomes and complications of reconstruction and amputation for type IIIB and IIIC fractures of the tibia. Plast Reconstr Surg. 2008;122(6):1796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jupiter DC, Shibuya N, Clawson LD, Davis ML. Incidence and risk factors for amputation in foot and ankle trauma. J Foot Ankle Surg. 2012;51(3):317–22.

    Article  PubMed  Google Scholar 

  133. Gailey R, Allen K, Castles J, Kucharik J, Roeder M. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev. 2008;45(1):15–29.

    Article  PubMed  Google Scholar 

  134. Boutoille D, Feraille A, Maulaz D, Krempf M. Quality of life with diabetes-associated foot complications: comparison between lower-limb amputation and chronic foot ulceration. Foot Ankle Int. 2008;29(11):1074–8.

    Article  PubMed  Google Scholar 

  135. Harness N, Pinzur MS. Health related quality of life in patients with dysvascular transtibial amputation. Clin Orthop Relat Res. 2001;383:204–7.

    Article  Google Scholar 

  136. Tennvall GR, Apelqvist J, Eneroth M. Costs of deep foot infections in patients with diabetes mellitus. PharmacoEconomics. 2000;18(3):225–38.

    Article  CAS  PubMed  Google Scholar 

  137. Pinzur MS. Gait analysis in peripheral vascular insufficiency through-knee amputation. J Rehabil Res Dev. 1993;30(4):388–92.

    CAS  PubMed  Google Scholar 

  138. Pinzur MS. The metabolic cost of lower extremity amputation. Clin Podiatr Med Surg. 1997;14(4):599–602.

    CAS  PubMed  Google Scholar 

  139. Pinzur MS, Gold J, Schwartz D, Gross N. Energy demands for walking in dysvascular amputees as related to the level of amputation. Orthopedics. 1992;15(9):1033–6. discussion 6–7

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Shibuya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shibuya, N. (2017). The Charcot Foot. In: Lee, M., Grossman, J. (eds) Complications in Foot and Ankle Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-53686-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53686-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53684-2

  • Online ISBN: 978-3-319-53686-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics