Skip to main content

Standard Ovarian Stimulation Protocols and Their Outcomes

  • Chapter
  • First Online:
Development of In Vitro Maturation for Human Oocytes

Abstract

Standard ovarian stimulation with exogenous gonadotropins promotes multi-follicular development by inhibiting the natural mechanism of an LH surge with GnRH agonists or antagonists. Due to multiple follicular growths, the estradiol is at a supra-physiologic level, which leads to positive feedback to the pituitary gland, the creation of an LH surge, and as a result, premature ovulation. The combination of gonadotropins and either GnRH agonists or antagonists enables multiple follicles to grow to the preovulatory stage in the same cycle, followed by multiple oocyte maturation with ovulation triggers. A pretreatment evaluation helps classify the patient into one of three groups, based on their chance of responding to the treatment. The classifications are high, normal, and poor responders. Due to the different responses to the medication based on the ovarian reserves, an individualized controlled ovarian stimulation protocol allows the patients to achieve the optimal pregnancy outcome with diminution in the risk of ovarian hyperstimulation syndrome (OHSS). The GnRH agonist protocol remains the most widely used protocol for ovarian stimulation in the in vitro fertilization (IVF) program. GnRH antagonists have become the alternative protocol because they eliminate the risk of OHSS by administrating with GnRH agonists to trigger ovulation instead of human menopausal gonadotropin (HCG). GnRH antagonists shorten the duration of gonadotropins administration and have better patient comfort during administration than the GnRH agonist protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. te Velde E, Pearson P. The variability of female reproductive ageing. Hum Reprod Update. 2002;8:141–54.

    Article  Google Scholar 

  2. Holman DJ, Wood JW, Campbell KL. Age-dependent decline of female fecundity is caused by early fetal loss. In: te Velde ER, Pearson PL, Broekmans FJ, editors. Female reproductive aging. UK: Parthenon Publishing Group; 2000. p. 123–36

    Google Scholar 

  3. Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod. 2000;6:1055–62.

    Article  CAS  PubMed  Google Scholar 

  4. Ruess ML, Kline J, Santos R, Levin B, Timor-Tritsch I. Age and the ovarian follicle pool assessed with transvaginal ultrasonography. Am J Obstet Gynecol. 1996;174:624–7.

    Article  CAS  PubMed  Google Scholar 

  5. Scheffer GJ, Broekmans FJ, Dorland M, Habbema JD, Looman CW, te Velde ER. Antral follicle counts by transvaginal ultrasonography are related to age in women with proven natural fertility. Fertil Steril. 1999;72:845–51.

    Article  CAS  PubMed  Google Scholar 

  6. Tomas C, Nuojua-Huttunen S, Martikainen H. Pretreatment transvaginal ultrasound examination predicts ovarian responsiveness to gonadotropins in in-vitro fertilization. Hum Reprod. 1997;12:220–3.

    Article  CAS  PubMed  Google Scholar 

  7. Chang MY, Chiang CH, Hsieh TT, Soong YK, Hsu KH. Use of the antral follicle count to predict the outcome of assisted reproductive technologies. Fertil Steril. 1998;69:505–10.

    Article  CAS  PubMed  Google Scholar 

  8. Haadsma ML, Bukman A, Groen H, Roeloffzen EM, Groenewoud ER, Heineman MJ, Hoek A. The number of small antral follicles (2–6 mm) determines the outcome of endocrine ovarian reserve tests in a subfertile population. Hum Reprod. 2007;22:1925–31.

    Article  CAS  PubMed  Google Scholar 

  9. Jayaprakasan K, Deb S, Batcha M, Hopkisson J, Johnson I, Campbell B, Raine-Fenning N. The cohort of antral follicles measuring 2–6 mm reflects the quantitative status of ovarian reserve as assessed by serum levels of anti-Müllerian hormone and response to controlled ovarian stimulation. Fertil Steril. 2010;94:1775–81.

    Article  CAS  PubMed  Google Scholar 

  10. Hendriks DJ, Mol BW, Bancsi LF, Te Velde ER, Broekmans FJ. Antral follicle count in the prediction of poor ovarian response and pregnancy after in vitro fertilization: a meta-analysis and comparison with basal follicle-stimulating hormone level. Fertil Steril. 2005;83:291–301.

    Article  PubMed  Google Scholar 

  11. Muttukrishna S, McGarrigle H, Wakim R, Khadum I, Ranieri DM, Serhal P. Antral follicle count, anti-mullerian hormone and inhibin B: predictors of ovarian response in assisted reproductive technology? BJOG. 2005;112:1384–90.

    Article  CAS  PubMed  Google Scholar 

  12. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10:77–83.

    Article  CAS  PubMed  Google Scholar 

  13. Göksedef BP, Idiş N, Görgen H, Asma YR, Api M, Cetin A. The correlation of the antral follicle count and Serum anti-mullerian hormone. J Turk Ger Gynecol Assoc. 2010;11:212–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fanchin R, Taieb J, Lozano DH, Ducot B, Frydman R, Bouyer J. High reproducibility of serum anti- Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod. 2005;20:923–7.

    Article  CAS  PubMed  Google Scholar 

  15. La Marca A, Stabile G, Artenisio AC, Volpe A. Serum anti-Mullerian hormone throughout the human menstrual cycle. Hum Reprod. 2006;21:3103–7.

    Article  PubMed  Google Scholar 

  16. Hehenkamp JK, Loomans CW, Themmen AP, de Jong FH, teVelde ER, Broekmans FJ. Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J Clin Endocrinol Metab. 2006;10:4057–63.

    Article  CAS  Google Scholar 

  17. Broer SL, Dólleman M, Opmeer BC, Fauser BC, Mol BW, Broekmans FJ. AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: a meta-analysis. Hum Reprod Update. 2011;17:46–54.

    Article  CAS  PubMed  Google Scholar 

  18. Schipper I, Visser JA, Themmen AP, Laven JS. Limitations and pitfalls of antimullerian hormone measurements. Fertil Steril. 2012;98:823–4.

    Article  CAS  PubMed  Google Scholar 

  19. Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z. Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril. 1989;51:651–4.

    Article  CAS  PubMed  Google Scholar 

  20. Scott RT Jr, Hofmann GE, Oehninger S, Muasher SJ. Intercycle variability of day 3 follicle- stimulating hormone levels and its effect on stimulation quality in in vitro fertilization. Fertil Steril. 1990;54:297–302.

    Article  PubMed  Google Scholar 

  21. Kwee J, Schats R, McDonnell J, Lambalk CB, Schoemaker J. Intercycle variability of ovarian reserve tests: results of a prospective randomized study. Hum Reprod. 2004;19:590–5.

    Article  CAS  PubMed  Google Scholar 

  22. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12:685–718.

    Article  CAS  PubMed  Google Scholar 

  23. Bancsi LF, Broekmans FJ, Mol BW, Habbema JD, teVelde ER. Performance of basal follicle- stimulating hormone in the prediction of poor ovarian response and failure to become pregnant after in vitro fertilization: a meta-analysis. Fertil Steril. 2003;79:1091–100.

    Article  PubMed  Google Scholar 

  24. Esposito MA, Coutifaris C, Barnhart KT. A moderately elevated day 3 FSH concentration has limited predictive value, especially in younger women. Hum Reprod. 2002;17:118–23.

    Article  CAS  PubMed  Google Scholar 

  25. Mutlu M, Erdem M, Erdem A, Yildiz S, Mutlu I, Arisoy O, et al. Antral follicle count determines poor ovarian response better than anti-mullerian hormone but age is the only predictor for live birth in in vitro fertilization cycles. J Assist Reprod Genet. 2013;30:657–65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. National Institute for Clinical Excellence Guideline. Fertility: assessment and treatment for people with fertility problems. UK: RCOG Press. 2004;60–62. ISBN 1-900364-97-2.

    Google Scholar 

  27. van Wely M, Westergaard LG, Bossuyt PM, van der Veen F. Effectiveness of human menopausal gonadotropin versus recombinant follicle-stimulating hormone for controlled ovarian hyperstimulation in assisted reproductive cycles: a meta-analysis. Fertil Steril. 2003;80:1086–93.

    Article  PubMed  Google Scholar 

  28. Lossl K, Andersen AN, Loft A, et al. Androgen priming using aromatase inhibitor and hCG during early-follicular-phase GnRH antagonist down-regulation in modified antagonist protocols. Hum Reprod. 2006;21:2593–600.

    Article  CAS  PubMed  Google Scholar 

  29. Sullivan MW, Stewart-Akers A, Krasnow JS, et al. Ovarian responses in women to recombinant follicle-stimulating hormone and luteinizing hormone (LH): a role for LH in the final stages of follicular maturation. J Clin Endocrinol Metab. 1999;84:228–32.

    CAS  PubMed  Google Scholar 

  30. Chappel SC, Howles C. Reevaluation of the roles of luteinizing-hormone and follicle-stimulating-hormone in the ovulatory process. Hum Reprod. 1991;6:1206–12.

    Article  CAS  PubMed  Google Scholar 

  31. Lahoud R, Al-Jefout M, Tyler J, Ryan J, Driscoll G. A relative reduction in mid-follicular LH concentrations during GnRH agonist IVF/ICSI cycles leads to lower live birth rates. Hum Reprod. 2006;21:2645–9.

    Article  CAS  PubMed  Google Scholar 

  32. O’dea L, O’brien F, Currie K, Hemsey G. Follicular development induced by recombinant luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anovulatory women with LH and FSH deficiency: evidence of a threshold effect. Curr Med Res Opin. 2008;24:2785–93.

    Article  PubMed  CAS  Google Scholar 

  33. Shoham Z, Smith H, Yeko T, O’brien F, Hemsey G, O’dea L. Recombinant LH (lutropin alfa) for the treatment of hypogonadotrophic women with profound LH deficiency: a randomized, double-blind, placebo-controlled, proof-of-efficacy study. Clin Endocrinol. 2008;69:471–8.

    Article  CAS  Google Scholar 

  34. Kaufmann R, Dunn R, Vaughn T, Hughes G, O’brien F, Hemsey G, O’dea LSL. Recombinant human luteinizing hormone, lutropin alfa, for the induction of follicular development and pregnancy in profoundly gonadotropin-deficient women. Clin Endocrinol. 2007;67:563–9.

    CAS  Google Scholar 

  35. Schoot DC, Harlin J, Shoham Z, Mannaerts B, Lahlou N, Bouchard P, Bennink H, Fauser B. Recombinant human follicle-stimulating-hormone and ovarian response in gonadotropin-deficient women. Hum Reprod. 1994;9:1237–42.

    Article  CAS  PubMed  Google Scholar 

  36. Couzinet B, Lestrat N, Brailly S, Forest M, Schaison G. Stimulation of ovarian follicular maturation with pure follicle-stimulating-hormone in women with gonadotropin-deficiency. J Clin Endocrinol Metab. 1988;66:552–6.

    Article  CAS  PubMed  Google Scholar 

  37. Kyrou D, Kolibianakis EM, Venetis CA, Papanikolaou EG, Bontis J, Tarlatzis BC. How to improve the probability of pregnancy in poor responders undergoing in vitro fertilization: a systematic review and meta-analysis. Fertil Steril. 2009;91:749–66.

    Article  CAS  PubMed  Google Scholar 

  38. Venetis CA, Kolibianakis EM, Tarlatzi TB, Tarlatzis BC. Evidence-based management of poor ovarian response. Ann N Y Acad Sci. 2010;1205:199–206.

    Article  CAS  PubMed  Google Scholar 

  39. Kolibianakis EM, Venetis CA, Diedrich K, Tarlatzis BC, Griesinger G. Addition of growth hormone to gonadotrophins in ovarian stimulation of poor responders treated by in-vitro fertilization: a systematic review and meta-analysis. Hum Reprod Update. 2009;15:613–22.

    Article  CAS  PubMed  Google Scholar 

  40. Keay SD, Liversedge NH, Mathur RS, Jenkins JM. Assisted conception following poor ovarian response to gonadotrophin stimulation. Br J Obstet Gynaecol. 1997;104:521–7.

    Article  CAS  PubMed  Google Scholar 

  41. Kailasam C, Keay SD, Wilson P, Ford WC, Jenkins JM. Defining poor ovarian response during IVF cycles, in women aged <40 years, and its relationship with treatment outcome. Hum Reprod. 2004;19:1544–7.

    Article  CAS  PubMed  Google Scholar 

  42. Lehert P, Kolibianakis EM, Venetis CA, Schertz J, Saunders H, Arriagada P, Copt S, Tarlatzis B. Recombinant human follicle-stimulating hormone (r-hFSH) plus recombinant luteinizing hormone versus r-hFSH alone for ovarian stimulation during assisted reproductive technology: systematic review and meta-analysis. Reprod Biol Endocrinol. 2014;12:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ulug U, Ben-Shlomo I, Turan E, Erden HF, Akman MA, Bahceci M. Conception rates following assisted reproduction in poor responder patients: a retrospective study in 300 consecutive cycles. Reprod Biomed Online. 2003;6:439–43.

    Article  PubMed  Google Scholar 

  44. Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400,135 treatment cycles. Hum Reprod. 2011;26:1768–74.

    Article  PubMed  Google Scholar 

  45. Hughes EG, Fedorkow DM, Daya S. The routine use of gonadotropin releasing hormone agonists prior to in-vitro fertilization and gamete intrafallopian transfer: a meta-analysis of randomized controlled trials. Fertil Steril. 1992;58:888–96.

    Article  CAS  PubMed  Google Scholar 

  46. Daya S. Gonadotropin releasing hormone agonist protocols for pituitary desensitization in in vitro fertilization and gamete intrafallopian transfer cycles. Cochrane Database Syst Rev. 2000;2:CD001299.

    Google Scholar 

  47. Garcia J, Padilla S, Bayati J, Baramki T. Follicular phase gonadotropin—releasing hormone agonist and human gonadotropins: a better alternative for ovulation induction in in vitro fertilization. Fertil Steril. 1990;53:302–5.

    Article  CAS  PubMed  Google Scholar 

  48. Kenigsberg D, Littman BA, Hodgen GD. Medical hypophysectomy. I. Dose- response using a gonadotropin-releasing hormone antagonist. Fertil Steril. 1984;42:112–5.

    Article  CAS  PubMed  Google Scholar 

  49. Huirne JA, Lambalk CB. Gonadotropin—releasing-hormone-receptor antagonists. Lancet. 2001;358:1793–803.

    Article  CAS  PubMed  Google Scholar 

  50. Borm G, Mannaerts B. Treatment with the gonadotrophin-releasing hormone antagonist ganirelix in women undergoing ovarian stimulation with recombinant follicle stimulating hormone is effective, safe and convenient: results of a controlled, randomized, multicentre trial. The European Orgalutran Study Group. Hum Reprod. 2000;15:1490–8.

    Article  CAS  PubMed  Google Scholar 

  51. Matikainen T, Ding YQ, Vergara M, Huhtaniemi I, Couzinet B, Schaison G. Differing responses of plasma bioactive and immunoreactive follicle-stimulating hormone and luteinizing hormone to gonadotropin—releasing hormone antagonist and agonist treatments in postmenopausal women. J Clin Endocrinol Metab. 1992;75:820–5.

    CAS  PubMed  Google Scholar 

  52. Itskovitz-Eldor J, Kol S, Mannaerts B. Use of a single bolus of GnRH agonist triptorelin to trigger ovulation after GnRH antagonist ganirelix treatment in women undergoing ovarian stimulation for assisted reproduction, with special reference to the prevention of ovarian hyperstimulation syndrome: preliminary report: short communication. Hum Reprod. 2000;15:1965–8.

    Article  CAS  PubMed  Google Scholar 

  53. Al-Inany HG, Youssef MA, Aboulghar M, Broekmans F, Sterrenburg M, Smit J, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev. 2011;5:CD001750.

    Google Scholar 

  54. Grow D, Kawwass JF, Kulkarni AD, Durant T, Jamieson DJ, Macaluso M. GnRH agonist and GnRH antagonist protocols: comparison of outcomes among good-prognosis patients using national surveillance data. Reprod Biomed Online. 2014;29:299–304.

    Article  CAS  PubMed  Google Scholar 

  55. Sunkara S, Coomarasamy A, Faris R, Braude P, Khalaf Y. Long gonadotropin-releasing hormone agonist versus short agonist versus antagonist regimens in poor responders undergoing in vitro fertilization: a randomized controlled trial. Fertil Steril. 2014;101:147–53.

    Article  CAS  PubMed  Google Scholar 

  56. Kolibianakis EM, Collins J, Tarlatzis BC, Devroey P, Diedrich K, Griesinger G. Among patients treated for IVF with gonadotrophins and GnRH analogues, is the probability of live birth dependent on the type of analogue used? A systematic review and meta-analysis. Hum Reprod Update. 2006;12:651–71.

    Article  CAS  PubMed  Google Scholar 

  57. Heijnen EM, Eijkemans MJ, de Klerk C, Polinder S, Beckers NG, Klinkert ER, Broekmans FJ, Passchier J, Te Velde ER, Macklon NS, et al. A mild treatment strategy for in-vitro fertilisation: a randomised non-inferiority trial. Lancet. 2007;369:743–9.

    Article  PubMed  Google Scholar 

  58. Qublan HS, Amarin Z, Tahat YA, Smadi AZ, Kilani M. Ovarian cyst formation following GnRH agonist administration in IVF cycles: incidence and impact. Hum Reprod. 2006;21:640–4.

    Article  CAS  PubMed  Google Scholar 

  59. Sampaio M, Serra V, Miro F, Calatayud C, Castel-lvi RM, Pellicer A. Development of ovarian cysts during gonadotrophin-releasing hormone agonists (GnRHa) administration. Hum Reprod. 1991;6:194–7.

    Article  CAS  PubMed  Google Scholar 

  60. Calhaz-Jorge C, Leal F, Cordeiro I, Proenca H, Barata M, Pereira-Coelho AM. Pituitary down—regulation in IVF cycles: is it necessary to use strict criteria? J Assist Reprod Genet. 1995;12:615–9.

    Article  CAS  PubMed  Google Scholar 

  61. Develioglu OH, Cox B, Toner JP, Oehninger S, Muasher SJ. The value of basal serum follicle stimulating hormone, luteinizing hormone and oestradiol concentrations following pituitary down-regulation in predicting ovarian response to stimulation with highly purified follicle stimulating hormone. Hum Reprod. 1999;14:1168–74.

    Article  CAS  PubMed  Google Scholar 

  62. Sampaio M, Serra V, Miro F, Calatayud C, Castel-lvi RM, Pellicer A. Development of ovarian cysts during gonadotrophin-releasing hormone agonists (GnRHa) administration. Hum Reprod. 1991;6:194–7.

    Article  CAS  PubMed  Google Scholar 

  63. Lockwood GM, Pinkerton SM, Barlow DH. A prospective randomized single-blind comparative trial of nafarelin acetate with buserelin in long—protocol gonadotrophin-releasing hormone analogue controlled in-vitro fertilization cycles. Hum Reprod. 1995;10:293–8.

    Article  CAS  PubMed  Google Scholar 

  64. Daya S. Gonadotropin releasing hormone agonist protocols for pituitary desensitization in in vitro fertilization and gamete intrafallopian transfer cycles. Cochrane Database Syst Rev. 2000;2:CD001299.

    Google Scholar 

  65. Olivennes F, Diedrich K, Frydman R, Felberbaum RE, Howles CM. Cerotide Multiple Dose International Study Group; Cetrotide Single Dose International Study Group. Safety and efficacy of a 3 mg dose of the GnRH antagonist cetrorelix in preventing premature LH surges: report of two multicenter multinational, phase IIIb clinical experiences. Reprod Biomed Online. 2003;6:432–8.

    Article  CAS  PubMed  Google Scholar 

  66. Olivennes F, Fanchin R, Bouchard P, De Ziegler D, Taieb J, Selva J, et al. The single or dual administration of the gonadotropin-releasing hormone antagonist Cetrorelix in an in vitro fertilization-embryo transfer program. Fertil Steril. 1994;62:468–76.

    Article  CAS  PubMed  Google Scholar 

  67. The ganirelix dose-finding study group. A double-blind, randomized, dose-finding study to assess the efficacy of the gonadotrophin-releasing hormone antagonist ganirelix (Org 37462) to prevent premature luteinizing hormone surges in women undergoing ovarian stimulation with recombinant follicle stimulating hormone(Puregon). Hum Reprod. 1998;13:3023–31.

    Article  Google Scholar 

  68. Borm G, Mannaerts B. Treatment with the gonadotrophin-releasing hormone antagonist ganirelix in women undergoing ovarian stimulation with recombinant follicle stimulating hormone is effective, safe and convenient: results of a controlled, randomized, multicenter trial. The European Orgalutran Study Group. Hum Reprod. 2000;15:1877.

    Article  Google Scholar 

  69. Fluker M, Grifo J, Leader A, Levy M, Meldrum D, Muasher S, et al. Efficacy and safety of ganirelix acetate versus leuprolide acetate in women undergoing controlled ovarian hyperstimulation. Fertil Steril. 2001;75:38–45.

    Article  CAS  PubMed  Google Scholar 

  70. The European and Middle East Orgalutran Study Group. Comparable clinical outcome using the GnRH antagonist ganirelix or a long protocol of the GnRH agonist triptorelin for the prevention of premature LH surges in women undergoing ovarian stimulation. Hum Reprod. 2001;16:644–51.

    Article  Google Scholar 

  71. Ludwig M, Katalinic A, Banz C, Schroder AK, Loning M, Weiss JM, et al. Tailoring the GnRH antagonist cetrorelix acetate to individual patients’ needs in ovarian stimulation for IVF: Results of a prospective, randomized study. Hum Reprod. 2002;17:2842–5.

    Article  CAS  PubMed  Google Scholar 

  72. Kolibianakis EM, Albano C, Kahn J, Camus M, Tournaye H, Van Steirteghem AC, et al. Exposure to high levels of luteinizing hormone and estradiol in the early follicular phase of gonadotropin-releasing hormone antagonist cycles is associated with a reduced chance of pregnancy. Fertil Steril. 2003;79:873–80.

    Article  PubMed  Google Scholar 

  73. Escudero E, Bosch E, Crespo J, Simon C, Remohi J, Pellicer A. Comparison of two different starting multiple dose gonadotropin-releasing hormone antagonist protocols in a selected group of in vitro fertilization-embryo transfer patients. Fertil Steril. 2004;81:562–6.

    Article  CAS  PubMed  Google Scholar 

  74. Mochtar MH. The effect of an individualized GnRH antagonist protocol on folliculogenesis in IVF/ICSI. Hum Reprod. 2004;19:1713–8.

    Article  CAS  PubMed  Google Scholar 

  75. Al-Inany H, Aboulghar MA, Mansour RT, Serour GI. Optimizing GnRH antagonist administration: meta-analysis of fixed versus flexible protocol. Reprod Biomed Online. 2005;10:567–70.

    Article  CAS  PubMed  Google Scholar 

  76. Kolibianakis EM, Venetis CA, Kalogeropoulou L, Papanikolaou E, Tarlatzis BC. Fixed versus flexible gonadotropin-releasing hormone antagonist administration in in vitro fertilization: a randomized controlled trial. Fertil Steril. 2011;95:558–62.

    Article  CAS  PubMed  Google Scholar 

  77. Nargund G, Fauser BC, Macklon NS, Ombelet W, Nygren K, Frydman R. Rotterdam ISMAAR Consensus Group on Terminology for Ovarian Stimulation for IVF. The ISMAAR proposal on terminology for ovarian stimulation for IVF. Hum Reprod. 2007;22:2801–4.

    Article  CAS  PubMed  Google Scholar 

  78. Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after in vitro fertilization. N Engl J Med. 2009;360:236–43.

    Article  CAS  PubMed  Google Scholar 

  79. Hoomans EH, Andersen AN, Loft A, Leerentveld RA, van Kamp AA, Zech H. A prospective, randomized clinical trial comparing 150 IU recombinant follicle stimulating hormone (Puregon ((R))) and 225 IU highly purified urinary follicle stimulating hormone (Metrodin-HP ((R))) in a fixed-dose regimen in women undergoing ovarian stimulation. Hum Reprod. 1999;14:2442–7.

    Article  CAS  PubMed  Google Scholar 

  80. Out HJ, Braat DD, Lintsen BM, Gurgan T, Bukulmez O, Gokmen O, et al. Increasing the daily dose of recombinant follicle stimulating hormone (Puregon) does not compensate for the age-related decline in retrievable oocytes after ovarian stimulation. Hum Reprod. 2000;15:29–35.

    Article  CAS  PubMed  Google Scholar 

  81. Out HJ, David I, Ron-El R, Friedler S, Shalev E, Geslevich J, et al. A randomized, double-blind clinical trial using fixed daily doses of 100 or 200 IU of recombinant FSH in ICSI cycles. Hum Reprod. 2001;16:1104–9.

    Article  CAS  PubMed  Google Scholar 

  82. The Latin-American Puregon IVF Study Group. A double- blind clinical trial comparing a fixed daily dose of 150 and 250 IU of recombinant follicle-stimulating hormone in women undergoing in vitro fertilization. Fertil Steril. 2001;76:950–6.

    Article  Google Scholar 

  83. Yong PY, Brett S, Baird DT, Thong KJ. A prospective randomized clinical trial comparing 150 IU and 225 IU of recombinant follicle-stimulating hormone (Gonal-F) in a fixed-dose regimen for controlled ovarian stimulation in in vitro fertilization treatment. Fertil Steril. 2003;79:308–15.

    Article  PubMed  Google Scholar 

  84. Tarlatzis BC, Zepiridis L, Grimbizis G, Bontis J. Clinical management of low ovarian response to stimulation for IVF: a systematic review. Hum Reprod Update. 2003;9:61–76.

    Article  CAS  PubMed  Google Scholar 

  85. Sterrenburg MD, Veltman-Verhulst SM, Eijkemans MJ, Hughes EG, Macklon NS, Broekmans FJ, Fauser BC. Clinical outcomes in relation to the daily dose of recombinant follicle-stimulating hormone for ovarian stimulation in in vitro fertilization in presumed normal responders younger than 39 years: a meta-analysis. Hum Reprod Update. 2011;17:184–96.

    Article  CAS  PubMed  Google Scholar 

  86. Seyhan A, Ata B, Polat M, Son WY, Yarali H, Dahan MH. Severe early ovarian hyperstimulation syndrome following GnRH agonist trigger with the addition of 1500 IU hCG. Hum Reprod. 2013;28:2522–8.

    Article  CAS  PubMed  Google Scholar 

  87. Ling LP, Phoon JW, Lau MS, Chan JK, Viardot-Foucault V, Tan TY, et al. GnRH agonist trigger and ovarian hyperstimulation syndrome: relook at ‘freeze-all strategy’. Reprod Biomed Online. 2014;29:392–4.

    Article  CAS  PubMed  Google Scholar 

  88. Berkkanoglu M, Ozgur K. What is the optimum maximal gonadotropin dosage used in microdose flare-up cycles in poor responders? Fertil Steril. 2010;94:662–5.

    Article  CAS  PubMed  Google Scholar 

  89. Griesinger G, Diedrich K, Tarlatzis B, Kolibianakis E. GnRH-antagonists in ovarian stimulation for IVF in patients with poor response to gonadotrophins, polycystic ovary syndrome, and risk of ovarian hyperstimulation: a meta-analysis. Reprod Biomed Online. 2006;13:628–38.

    Article  CAS  PubMed  Google Scholar 

  90. Pu D, Wu J, Liu J. Comparisons of GnRH antagonist versus GnRH agonist protocol in poor ovarian responders undergoing IVF. Hum Reprod. 2011;26:2742–9.

    Article  CAS  PubMed  Google Scholar 

  91. Frydman R, Forman R, Rainhorn JD, Belaisch-Allart J, Hazout A, Testart J. A new approach to follicular stimulation for in vitro fertilization: programmed oocyte retrieval. Fertil Steril. 1986;46:657–62.

    Article  CAS  PubMed  Google Scholar 

  92. Wardle PG, Foster PA, Mitchell JD, McLaughlin EA, Williams JAC, Corrigan E, et al. Norethisterone treatment to control timing of IVF cycle. Hum Reprod. 1986;1:455–7.

    Article  CAS  PubMed  Google Scholar 

  93. Zorn JR, Boyer P, Guichard A. Never on a Sunday: programming for IVF-ET and GIFT. Lancet. 1987;1:385–6.

    Article  CAS  PubMed  Google Scholar 

  94. Gerli S, Remohí J, Partrizio P, Borrero C, Balmaceda JP, Silber SJ, et al. Programming of ovarian stimulation with norethindrone acetate in IVF/GIFT cycles. Hum Reprod. 1989;4:746–8.

    Article  CAS  PubMed  Google Scholar 

  95. de Ziegler D, Jääskelaïnen AS, Brioschi PA, Fanchin R, Bulletti C. Synchronisation of endogenous and exogenous FSH stimuli in controlled ovarian hyperstimulation (COH). Hum Reprod. 1998;13:561–4.

    Article  PubMed  Google Scholar 

  96. Griesinger G, Kolibianakis EM, Venetis C, Diedrich K, Tarlatzis B. Oral contraceptive pretreatment significantly reduces ongoing pregnancy likelihood in gonadotropin-releasing hormone antagonist cycles: an updated meta-analysis. Fertil Steril. 2010;94:2382–4.

    Article  CAS  PubMed  Google Scholar 

  97. Griesinger G, Venetis C, Marx T, Diedrich K, Tarlatzis B, Kolibianakis E. Oral contraceptive pill pretreatment in ovarian stimulation with GnRH antagonists for IVF: a systematic review and meta-analysis. Fertil Steril. 2008;90:1055–63.

    Article  CAS  PubMed  Google Scholar 

  98. Garcia-Velasco JA, Bermejo A, Ruiz F, Martínez Salazar J, Requena A, Pellicer A. Cycle scheduling with oral contraceptive pills in the GnRH antagonist protocol vs the long protocol: a randomized, controlled trial. Fertil Steril. 2011;96:590–3.

    Article  CAS  PubMed  Google Scholar 

  99. Blockeel C, Engels S, De Vos M, Haentjens P, Polyzos N, Stoop D, et al. Oestradiol valerate pretreatment in GnRH-antagonist cycles: a randomized controlled trial. Reprod Biomed Online. 2012;24:272–80.

    Article  CAS  PubMed  Google Scholar 

  100. Fanchin R, Schonauer LM, Cunha-Filho JS, Mendez Lozano DH, Frydman R. Coordination of antral follicle growth: basis for innovative concepts of controlled ovarian hyperstimulation. Semin Reprod Med. 2005;23:354–62.

    Article  CAS  PubMed  Google Scholar 

  101. Martins W, Vieira C, Teixeira D, Barbosa M, Dassuncao L, Nastri C. Ultrasound for monitoring controlled ovarian stimulation: a systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet Gynecol. 2014;43:25–33.

    Article  CAS  PubMed  Google Scholar 

  102. Vandekerckhove F, Gerris J, Vansteelandt S, De Sutter P. Adding serum estradiol measurements to ultrasound monitoring does not change the yield of mature oocytes in IVF/ICSI. Gynecol Endocrinol. 2014;30:649–52.

    Article  CAS  PubMed  Google Scholar 

  103. Kessler MJ, Reddy MS, Shah RH, Bahl OP. Structure of N-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979;254:7901–8.

    CAS  PubMed  Google Scholar 

  104. Europian Recombinant LH Study Group. Human recombinant luteinizing hormone is as effective as, but safer than, urinary human chorionic gonadotropin in inducing final follicular maturation and ovulation in in vitro fertilization procedures: results of a multicenter double-blind study. J Clin Endocrinol Metab. 2001;86:2607–18.

    Google Scholar 

  105. Al Inani MG, Aboulghar M, Mansour R, Proctor M. Recombinant versus urinary human chorionic gonadotrophin for ovulation induction in assisted conception. Cochrane Database Syst Rev. 2005;2:CD003719.

    Google Scholar 

  106. Papanikolaou E, Fatemi H, Camus M, Kyrou D, Polyzos N, Humaidan P, et al. Higher birth rate after recombinant hCG triggering compared with urinary-derived hCG in single-blastocyst IVF antagonist cycles: a randomized controlled trial. Fertil Steril. 2010;94:2902–4.

    Article  CAS  PubMed  Google Scholar 

  107. Delvigne A, Rozenberg S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum Reprod Update. 2002;8:559–77.

    Article  CAS  PubMed  Google Scholar 

  108. Griesinger G, Kolibianakis E, Papanikolaou E, Diedrich K, Van Steirteghem A, Devroey P, et al. Triggering of final oocyte maturation with gonadotropin-releasing hormone agonist or human chorionic gonadotropin. Live birth after frozen-thawed embryo replacement cycles. Fertil Steril. 2007;88:616–21.

    Article  CAS  PubMed  Google Scholar 

  109. Humaidan P, Bredkjaer H, Bungum L, Bungum M, Grondahl M, Westergaard L, et al. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod. 2005;20:1213–20.

    Article  CAS  PubMed  Google Scholar 

  110. Kolibianakis E, Schultze-Mosgau A, Schroer A, Van Steirteghem A, Devroey P, Diedrich K, et al. A lower ongoing pregnancy rate can be expected when GnRH agonist is used for triggering final oocyte maturation instead of HCG in patients undergoing IVF with GnRH antagonists. Hum Reprod. 2005;20:2887–92.

    Article  CAS  PubMed  Google Scholar 

  111. Devroey P, Polyzos N, Blockeel C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod. 2011;26:2593–7.

    Article  PubMed  Google Scholar 

  112. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, et al. A randomised controlled study of human day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod. 2008;23:1976–82.

    Article  CAS  PubMed  Google Scholar 

  113. AbdelHafez F, Desai N, Abou-Setta A, Falcone T, Goldfarb J. Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod Biomed Online. 2010;20:209–22.

    Article  PubMed  Google Scholar 

  114. Humaidan P, Bungum L, Bungum M, Andersen C. Rescue of corpus luteum function with peri-ovulatory HCG supplementation in IVF/ICSI GnRH antagonist cycles in which ovulation was triggered with a GnRH agonist: a pilot study. Reprod Biomed Online. 2006;13:173–8.

    Article  CAS  PubMed  Google Scholar 

  115. Humaidan P. Luteal phase rescue in high-risk OHSS patients by GnRHa triggering in combination with low-dose HCG: a pilot study. Reprod Biomed Online. 2009;18:630–4.

    Article  CAS  PubMed  Google Scholar 

  116. Humaidan P, Ejdrup Bredkjaer H, Westergaard L, Yding Andersen C. 1500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction: a prospective, randomized, controlled study. Fertil Steril. 2010;93:847–54.

    Article  CAS  PubMed  Google Scholar 

  117. Humaidan P, Polyzos N, Alsbjerg B, Erb K, Mikkelsen A, Elbaek H, et al. GnRH a trigger and individualized luteal phase hCG support according to ovarian response to stimulation: two prospective randomized controlled multi-centre studies in IVF patients. Hum Reprod. 2013;28:2511–21.

    Article  CAS  PubMed  Google Scholar 

  118. Iliodromiti S, Blockeel C, Tremellen K, Fleming R, Tournaye H, Humaidan P, et al. Consistent high clinical pregnancy rates and low ovarian hyperstimulation syndrome rates in high-risk patients after GnRH agonist triggering and modified luteal support: a retrospective multicentre study. Hum Reprod. 2013;28:2529–36.

    Article  CAS  PubMed  Google Scholar 

  119. Shapiro B, Daneshmand S, Garner F, Aguirre M, Thomas S. Gonadotropin-releasing hormone agonist combined with a reduced dose of human chorionic gonadotropin for final oocyte maturation in fresh autologous cycles of in vitro fertilization. Fertil Steril. 2008;90:231–3.

    Article  CAS  PubMed  Google Scholar 

  120. Shapiro B, Daneshmand S, Garner F, Aguirre M, Hudson C. Comparison of “triggers” using leuprolide acetate alone or in combination with low-dose human chorionic gonadotropin. Fertil Steril. 2011;95:2715–7.

    Article  CAS  PubMed  Google Scholar 

  121. Oktay K, Turkcuoglu I, Rodriguez-Wallberg K. GnRH agonist trigger for women with breast cancer undergoing fertility preservation by aromatase inhibitor/FSH stimulation. Reprod Biomed Online. 2010;20:783–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kyrou D, Al-Azemi M, Papanikolaou EG, et al. The relationship of premature progesterone rise with serum estradiol levels and number of follicles in GnRH antagonist/recombinant FSH-stimulated cycles. Eur J Obstet Gynecol Reprod Biol. 2012;162:165–8.

    Article  CAS  PubMed  Google Scholar 

  123. European and Middle East Orgalutran Study Group. Comparable clinical outcome using the GnRH antagonist ganirelix or a long protocol of the GnRH agonist triptorelin for the prevention of premature LH surges in women undergoing ovarian stimulation. Hum Reprod. 2001;16:644–51.

    Article  Google Scholar 

  124. Huang CC, Lien YR, Chen HF, et al. The duration of pre-ovulatory serum progesterone elevation before hCG administration affects the outcome of IVF/ICSI cycles. Hum Reprod. 2012;27:2036–45.

    Article  CAS  PubMed  Google Scholar 

  125. Chuang M, Zapantis A, Taylor M, Jindal S, Neal-Perry G, Lieman H, et al. Prolonged gonadotropin stimulation is associated with decreased ART success. J Assist Reprod and Genet. 2010;27:711–7.

    Article  Google Scholar 

  126. Dimitry ES, Oskarsson T, Conaghan J, Margara R, Winston RM. Beneficial effects of a 24 h delay in human chorionic gonadotrophin administration during in-vitro fertilization treatment cycles. Hum Reprod. 1991;6:944–6.

    Article  CAS  PubMed  Google Scholar 

  127. Tremellen K, Lane M. Avoidance of weekend oocyte retrievals during GnRH antagonist treatment by simple advancement or delay of hCG administration does not adversely affect IVF live birth outcomes. Hum Reprod. 2010;25:1219–24.

    Article  CAS  PubMed  Google Scholar 

  128. Kolibianakis EM, Albano C, Camus M, Tournaye H, Van Steirteghem AC, Devroey P. Prolongation of the follicular phase in in vitro fertilization results in a lower ongoing pregnancy rate in cycles stimulated with recombinant follicle-stimulating hormone and gonadotropin-releasing hormone antagonists. Fertil Steril. 2004;82:102–7.

    Article  CAS  PubMed  Google Scholar 

  129. Kolibianakis EM, Bourgain C, Papanikolaou EG, Camus M, Tournaye H, Van Steirteghem AC, Devroey P. Prolongation of follicular phase by delaying hCG administration results in a higher incidence of endometrial advancement on the day of oocyte retrieval in GnRH antagonist cycles. Hum Reprod. 2005;20:2453–6.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang P, Wanggren K. Late hCG administration yields more good quality embryos and favors the overall IVF outcome. Open J Obstetrics Gynecol. 2012;2:331–6.

    Article  CAS  Google Scholar 

  131. Vandekerckhove F, Gerris J, Vansteelandt S, De Baerdemaeker A, Tilleman K, De Sutter P. Delaying the oocyte maturation trigger by one day leads to a higher metaphase II oocyte yield in IVF/ICSI: a randomised controlled trial. Reprod Bio Endocrinol. 2014;23:12–31.

    Google Scholar 

  132. Chen Y, Zhang Y, Hu M, Liu X, Qi H. Timing of human chorionic gonadotropin (hCG) hormone administration in IVF/ICSI protocols using GnRH agonist or antagonists: a systematic review and meta-analysis. Gynecol Endocrinol. 2014;30:431–7.

    Article  CAS  PubMed  Google Scholar 

  133. Droesch K, Muasher SJ, Kreiner D, Jones GS, Acosta AA, Rosenwaks Z. Timing of oocyte retrieval in cycles with a spontaneous luteinizing hormone surge in a large in vitro fertilization program. Fertil Steril. 1988;50:451–6.

    Google Scholar 

  134. Nargund G, Reid F, Parsons J. Human chorionic gonadotropin-to-oocyte collection interval in a superovulation IVF program. A prospective study. J Assist Reprod Genet. 2001;18:87–90.

    Google Scholar 

  135. Bjercke S, Tanbo T, Dale PO, Abyholm T. Comparison between two hCG-to-oocyte aspiration intervals on the outcome of in vitro fertilization. J Assist Reprod Genet. 2000;17:319–22.

    Google Scholar 

  136. Gudmundsson J, Fleming R, Jamieson ME, McQueen D, Coutts JR. Luteinization to oocyte retrieval delay in women in whom multiple follicular growth was induced as part of an in vitro fertilization/gamete intrafallopian transfer program. Fertil Steril. 1990;53:735–7.

    Google Scholar 

  137. Mansour RT, Aboulghar MA, Serour GI. Study of the optimum time for human chorionic gonadotropin-ovum pickup interval in in vitro fertilization. J Assist Reprod Genet. 1994;11:478–81.

    Google Scholar 

  138. Reichman DE, Missmer SA, Berry KF, Ginsburg ES, Racowsky C. Effect of time between human chorionic gonadotropin injection and egg retrieval is age dependent. Fertil Steril. 2011;95:1990–5.

    Google Scholar 

  139. Weiss A, Neril R, Geslevich J, Lavee M, Beck-Fruchter R, Golan J, et al. Lag time from ovulation trigger to oocyte aspiration and oocyte maturity in assisted reproductive technology cycles: a retrospective study. Fertil Steril. 2014;102:419–23.

    Article  PubMed  Google Scholar 

  140. Bokal E, Vrtovec H, Klun I, Verdenik I. Prolonged HCG action affects angiogenic substances and improves follicular maturation, oocyte quality and fertilization competence in patients with polycystic ovarian syndrome. Hum Reprod. 2005;20:1562–8.

    Article  CAS  PubMed  Google Scholar 

  141. Wang W, Zhang X, Wang W, Liu Y, Zhao L, Xue S, et al. The time interval between hCG priming and oocyte retrieval in ART program: a meta-analysis. J Assist Reprod Genet. 2011;28:901–10.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Coulam C, Bustillo M, Schulman J. Empty follicle syndrome. Fertil Steril. 1986;46:1153–5.

    Article  CAS  PubMed  Google Scholar 

  143. Quintans C, Donaldson M, Blanco L, Pasqualini R. Empty follicle syndrome due to human errors: its occurrence in an in-vitro fertilization programme. Hum Reprod. 1998;13:2703–5.

    Article  CAS  PubMed  Google Scholar 

  144. Ndukwe G, Thornton S, Fishel S, Dowell K, Aloum M, Green S. ‘Curing’ empty follicle syndrome. Hum Reprod. 1997;12:21–3.

    Article  CAS  PubMed  Google Scholar 

  145. Snaifer E, Hugues JN, Poncelet C, Sifer C, Pasquier M, Cedrin-Durnerin I. ‘‘Empty follicle syndrome’’ after human error: pregnancy obtained after repeated oocyte retrieval in a gonadotropin-releasing hormone antagonist cycle. Fertil Steril. 2008;90:850.

    Article  PubMed  Google Scholar 

  146. Quintans CJ, Donaldson MJ, Blanco LA, Pasqualini RS. Empty follicle syndrome due to human errors: its occurrence in an in-vitro fertilization programme. Hum Reprod. 1998;13:2703–5.

    Article  CAS  PubMed  Google Scholar 

  147. Ubaldi F, Nagy Z, Janssenwillen C, Smitz J, Van Steirteghem A, Devroey P. Ovulation by repeated human chorionic gonadotrophin in ‘empty follicle syndrome’ yields a twin clinical pregnancy. Hum Reprod. 1997;12:454–6.

    Article  CAS  PubMed  Google Scholar 

  148. Reichman DE, Hornstein MD, Jackson KV, Racowsky C. Empty follicle syndrome—does repeat administration of hCG really work? Fertil Steril. 2010;94:375–7.

    Article  CAS  PubMed  Google Scholar 

  149. Stevenson T, Lashen H. Empty follicle syndrome: the reality of a controversial syndrome, a systematic review. Fertil Steril. 2008;90:691–8.

    Article  PubMed  Google Scholar 

  150. Reichman DE, Greenwood E, Meyer L, Kligman I, Rosenwaks Z. Can in vitro fertilization cycles be salvaged by repeat administration of intramuscular human chorionic gonadotropin the day after failed injection? Fertil Steril. 2012;98:671–4.

    Article  CAS  PubMed  Google Scholar 

  151. Castillo J, Garcia-Velasco J, Humaidan P. Empty follicle syndrome after GnRHa triggering versus hCG triggering in COS. J Assist Reprod Genet. 2012;29:249–53.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kummer N, Feinn R, Griffin D, Nulsen J, Benadiva C, Engmann L. Predicting successful induction of oocyte maturation after gonadotropin-releasing hormone agonist (GnRHa) trigger. Hum Reprod. 2013;28:152–9.

    Article  CAS  PubMed  Google Scholar 

  153. Chen SL, Ye DS, Chen X, Yang XH, Zheng HY, Tang Y, et al. Circulating luteinizing hormone level after triggering oocyte maturation with GnRH agonist may predict oocyte yield in flexible GnRH antagonist protocol. Hum Reprod. 2012;27:1351–6.

    Article  PubMed  CAS  Google Scholar 

  154. Shapiro B, Daneshmand S, Restrepo H, Garner F, Aguirre M, Hudson C. Efficacy of induced luteinizing hormone surge after “trigger” with gonadotropin-releasing hormone agonist. Fertil Steril. 2011;95:826–8.

    Article  CAS  PubMed  Google Scholar 

  155. Kolibianakis EM, Bourgain C, Platteau P, Albano C, Van Steirteghem AC, Devroey P. Abnormal endometrial development occurs during the luteal phase of nonsupplemented donor cycles treated with recombinant follicle-stimulating hormone and gonadotropin-releasing hormone antagonists. Fertil Steril. 2003;80:464–6.

    Article  PubMed  Google Scholar 

  156. Mochtar MH, van Wely M, Van der Veen F. Timing luteal phase support in GnRH agonist down-regulated IVF/embryo transfer cycles. Hum Reprod. 2006;21:905–8.

    Article  CAS  PubMed  Google Scholar 

  157. van der Linden M, Buckingham K, Farquhar C, Kremer J, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2011;10:CD009154.

    Google Scholar 

  158. Zarutskie P, Phillips J. A meta-analysis of the route of administration of luteal phase support in assisted reproductive technology: vaginal versus intramuscular progesterone. Fertil Steril. 2009;92:163–9.

    Article  CAS  PubMed  Google Scholar 

  159. Propst A, Hill J, Ginsburg E, Hurwitz S, Politch J, Yanushpolsky E. A randomized study comparing Crinone 8% and intramuscular progesterone supplementation in in vitro fertilization-embryo transfer cycles. Fertil Steril. 2001;76:1144–9.

    Article  CAS  PubMed  Google Scholar 

  160. Bouckaert Y, Robert F, Englert Y, De Backer D, De Vuyst P, Delbaere A. Acute eosinophilic pneumonia associated with intramuscular administration of progesterone as luteal phase support after IVF: case report. Hum Reprod. 2004;19:1806–10.

    Article  CAS  PubMed  Google Scholar 

  161. Aboulghar M, Amin Y, Al-Inany H, Aboulghar M, Mourad L, Serour G, et al. Prospective randomized study comparing luteal phase support for ICSI patients up to the first ultrasound compared with an additional three weeks. Hum Reprod. 2008;23:857–62.

    Article  PubMed  Google Scholar 

  162. Vaisbuch E, de Ziegler D, Leong M, Weissman A, Shoham Z. Luteal-phase support in assisted reproduction treatment: real-life practices reported worldwide by an updated website-based survey. Reprod Biomed Online. 2014;28:330–5.

    Article  PubMed  Google Scholar 

  163. Devroey P, Aboulghar M, Garcia-Velasco J, Griesinger G, Humaidan P, Kolibianakis E, et al. Improving the patient’s experience of IVF/ICSI: a proposal for an ovarian stimulation protocol with GnRH antagonist co-treatment. Hum Reprod. 2009;24:764–74.

    Article  CAS  PubMed  Google Scholar 

  164. Yding Andersen C, Vilbour Andersen K. Improving the luteal phase after ovarian stimulation: reviewing new options. Reprod biomed online. 2014;28:552–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchada Mongkolchaipak MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mongkolchaipak, S. (2017). Standard Ovarian Stimulation Protocols and Their Outcomes. In: Chian, RC., Nargund, G., Huang, J. (eds) Development of In Vitro Maturation for Human Oocytes. Springer, Cham. https://doi.org/10.1007/978-3-319-53454-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53454-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53452-7

  • Online ISBN: 978-3-319-53454-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics