Skip to main content

Abstract

The menstrual cycle is controlled by an endocrinological regulatory mechanism involving in the diencephalon (hypothalamus)–pituitary–ovary–uterus system. A feedback mechanism plays a key role in controlling this endocrinological regulatory mechanism and is modulated by hormones secreted from each organ and numerous local regulatory factors that function under control of these hormones. An accurate understanding of the endocrinological mechanism of ovarian cycles is extremely important, especially for infertility treatment. This chapter describes notable examples of this mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yen SSC, Strauss JF, Barbieri RL. Yen & Jaff’s reproductive endocrinology: physiology, pathophysiology, and clinical management. 7th edn. Philadelphia, PA: Elsevier/Saunders; 2014.

    Google Scholar 

  2. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology. 2007;148(12):5752–60.

    Article  CAS  PubMed  Google Scholar 

  3. Tena-Sempere M. GPR54 and kisspeptin in reproduction. Human Reprod Update. 2006;12(5):631–9.

    Article  CAS  Google Scholar 

  4. Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88(23):1731–7.

    Article  CAS  PubMed  Google Scholar 

  5. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Human Reprod Update. 2014;20(4):485–500.

    Article  CAS  Google Scholar 

  6. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7.

    Article  CAS  PubMed  Google Scholar 

  7. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, et al. The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010;31(11):1984–98.

    Article  CAS  PubMed  Google Scholar 

  8. George JT, Seminara SB. Kisspeptin and the hypothalamic control of reproduction: lessons from the human. Endocrinology. 2012;153(11):5130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jayasena CN, Nijher GM, Abbara A, Murphy KG, Lim A, Patel D, Mehta A, Todd C, Donaldson M, Trew GH, et al. Twice-weekly administration of kisspeptin-54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea. Clin Pharmacol Ther. 2010;88(6):840–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6.

    Article  CAS  PubMed  Google Scholar 

  11. Jayasena CN, Comninos AN, Veldhuis JD, Misra S, Abbara A, Izzi-Engbeaya C, Donaldson M, Ghatei MA, Bloom SR, Dhillo WS. A single injection of kisspeptin-54 temporarily increases luteinizing hormone pulsatility in healthy women. Clin Endocrinol. 2013;79(4):558–63.

    Article  CAS  Google Scholar 

  12. Rometo AM, Krajewski SJ, Voytko ML, Rance NE. Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab. 2007;92(7):2744–50.

    Article  CAS  PubMed  Google Scholar 

  13. Rance NE, Young WS 3rd. Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women. Endocrinology. 1991;128(5):2239–47.

    Article  CAS  PubMed  Google Scholar 

  14. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146(9):3686–92.

    Article  CAS  PubMed  Google Scholar 

  15. Leung PCK, Adashi EY. The ovary. 2nd ed. Amsterdam; Boston: Elsevier; 2004.

    Google Scholar 

  16. Loosfelt H, Misrahi M, Atger M, Salesse R, Vu Hai-Luu Thi MT, Jolivet A, Guiochon-Mantel A, Sar S, Jallal B, Garnier J, et al. Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science. 1989;245(4917):525–8.

    Article  CAS  PubMed  Google Scholar 

  17. Minegishi T, Nakamura K, Takakura Y, Miyamoto K, Hasegawa Y, Ibuki Y, Igarashi M, Minegish T. Cloning and sequencing of human LH/hCG receptor cDNA. Biochem Biophys Res Commun. 1990;172(3):1049–54.

    Article  CAS  PubMed  Google Scholar 

  18. Kuo JF, Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3’,5’-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci USA. 1969;64(4):1349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirakawa T, Ascoli M. The lutropin/choriogonadotropin receptor-induced phosphorylation of the extracellular signal-regulated kinases in leydig cells is mediated by a protein kinase a-dependent activation of ras. Mol Endocrinol. 2003;17(11):2189–200.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 2000;14(8):1283–300.

    Article  CAS  PubMed  Google Scholar 

  21. Greaves RF, Jevalikar G, Hewitt JK, Zacharin MR. A guide to understanding the steroid pathway: new insights and diagnostic implications. Clin Biochem. 2014;47(15):5–15.

    Article  CAS  PubMed  Google Scholar 

  22. Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res. 2011;52(12):2111–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151.

    Article  CAS  PubMed  Google Scholar 

  24. Lavigne P, Najmanivich R, Lehoux JG. Mammalian StAR-related lipid transfer (START) domains with specificity for cholesterol: structural conservation and mechanism of reversible binding. Sub-cellular Biochem. 2010;51:425–37.

    Article  CAS  Google Scholar 

  25. Katsumata N, Ohtake M, Hojo T, Ogawa E, Hara T, Sato N, Tanaka T. Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J Clin Endocrinol Metab. 2002;87(8):3808–13.

    Article  CAS  PubMed  Google Scholar 

  26. Hiort O, Holterhus PM, Werner R, Marschke C, Hoppe U, Partsch CJ, Riepe FG, Achermann JC, Struve D. Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46, XY sex reversal, and severe adrenal failure. J Clin Endocrinol Metab. 2005;90(1):538–41.

    Article  CAS  PubMed  Google Scholar 

  27. Hauffa B, Hiort O. P450 side-chain cleavage deficiency–a rare cause of congenital adrenal hyperplasia. Endocr Develop. 2011;20:54–62.

    CAS  Google Scholar 

  28. Miller WL. The syndrome of 17,20 lyase deficiency. J Clin Endocrinol Metab. 2012;97(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  29. Sohl CD, Guengerich FP. Kinetic analysis of the three-step steroid aromatase reaction of human cytochrome P450 19A1. J Biol Chem. 2010;285(23):17734–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamat A, Hinshelwood MM, Murry BA, Mendelson CR. Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans. Trends Endocrinol Metab TEM. 2002;13(3):122–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bulun SE. Clinical review 78: Aromatase deficiency in women and men: would you have predicted the phenotypes? J Clin Endocrinol Metab. 1996;81(3):867–71.

    Article  CAS  PubMed  Google Scholar 

  32. Belgorosky A, Guercio G, Pepe C, Saraco N, Rivarola MA. Genetic and clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm Res. 2009;72(6):321–30.

    CAS  PubMed  Google Scholar 

  33. Rochira V, Carani C. Aromatase deficiency in men: a clinical perspective. Nat Rev Endocrinol. 2009;5(10):559–68.

    Article  CAS  PubMed  Google Scholar 

  34. Stratakis CA, Vottero A, Brodie A, Kirschner LS, DeAtkine D, Lu Q, Yue W, Mitsiades CS, Flor AW, Chrousos GP. The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription. J Clin Endocrinol Metab. 1998;83(4):1348–57.

    CAS  PubMed  Google Scholar 

  35. Bulun SE, Noble LS, Takayama K, Michael MD, Agarwal V, Fisher C, Zhao Y, Hinshelwood MM, Ito Y, Simpson ER. Endocrine disorders associated with inappropriately high aromatase expression. J Steroid Biochem Mol Biol. 1997;61(3–6):133–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fukami M, Shozu M, Soneda S, Kato F, Inagaki A, Takagi H, Hanaki K, Kanzaki S, Ohyama K, Sano T, et al. Aromatase excess syndrome: identification of cryptic duplications and deletions leading to gain of function of CYP19A1 and assessment of phenotypic determinants. J Clin Endocrinol Metab. 2011;96(6):E1035–43.

    Article  CAS  PubMed  Google Scholar 

  37. Krone N, Arlt W. Genetics of congenital adrenal hyperplasia. Best Practice Res Clin Endocrinol Metab. 2009;23(2):181–92.

    Article  CAS  Google Scholar 

  38. Wedell A. Molecular genetics of 21-hydroxylase deficiency. Endocr Develop. 2011;20:80–7.

    CAS  Google Scholar 

  39. Koppens PF, Hoogenboezem T, Degenhart HJ. Carriership of a defective tenascin-X gene in steroid 21-hydroxylase deficiency patients: TNXB -TNXA hybrids in apparent large-scale gene conversions. Hum Mol Genet. 2002;11(21):2581–90.

    Article  CAS  PubMed  Google Scholar 

  40. Krone N, Reisch N, Idkowiak J, Dhir V, Ivison HE, Hughes BA, Rose IT, O’Neil DM, Vijzelaar R, Smith MJ, et al. Genotype-phenotype analysis in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. J Clin Endocrinol Metab. 2012;97(2):E257–67.

    Article  CAS  PubMed  Google Scholar 

  41. Penning TM. Human hydroxysteroid dehydrogenases and pre-receptor regulation: insights into inhibitor design and evaluation. J Steroid Biochem Mol Biol. 2011;125(1–2):46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saloniemi T, Jokela H, Strauss L, Pakarinen P, Poutanen M. The diversity of sex steroid action: novel functions of hydroxysteroid (17beta) dehydrogenases as revealed by genetically modified mouse models. J Endocrinol. 2012;212(1):27–40.

    Article  CAS  PubMed  Google Scholar 

  43. Lavery GG, Walker EA, Tiganescu A, Ride JP, Shackleton CH, Tomlinson JW, Connell JM, Ray DW, Biason-Lauber A, Malunowicz EM, et al. Steroid biomarkers and genetic studies reveal inactivating mutations in hexose-6-phosphate dehydrogenase in patients with cortisone reductase deficiency. J Clin Endocrinol Metab. 2008;93(10):3827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seckl JR. 11beta-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr Opin Pharmacol. 2004;4(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  45. Kratschmar DV, Vuorinen A, Da Cunha T, Wolber G, Classen-Houben D, Doblhoff O, Schuster D, Odermatt A. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11beta-hydroxysteroid dehydrogenase type 2. J Steroid Biochem Mol Biol. 2011;125(1–2):129–42.

    Article  CAS  PubMed  Google Scholar 

  46. Tanahashi T, Mune T, Morita H, Tanahashi H, Isomura Y, Suwa T, Daido H, Gomez-Sanchez CE, Yasuda K. Glycyrrhizic acid suppresses type 2 11 beta-hydroxysteroid dehydrogenase expression in vivo. J Steroid Biochem Mol Biol. 2002;80(4–5):441–7.

    Article  CAS  PubMed  Google Scholar 

  47. Moeller G, Adamski J. Multifunctionality of human 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol. 2006;248(1–2):47–55.

    Article  CAS  PubMed  Google Scholar 

  48. Lukacik P, Kavanagh KL, Oppermann U. Structure and function of human 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol. 2006;248(1–2):61–71.

    Article  CAS  PubMed  Google Scholar 

  49. Marchais-Oberwinkler S, Henn C, Moller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, et al. 17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol. 2011;125(1–2):66–82.

    Article  CAS  PubMed  Google Scholar 

  50. Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63:25–61.

    Article  CAS  PubMed  Google Scholar 

  51. Wilson JD, Griffin JE, Russell DW. Steroid 5 alpha-reductase 2 deficiency. Endocr Rev. 1993;14(5):577–93.

    CAS  PubMed  Google Scholar 

  52. Hong Y, Chen S. Aromatase, estrone sulfatase, and 17beta-hydroxysteroid dehydrogenase: structure-function studies and inhibitor development. Mol Cell Endocrinol. 2011;340(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  53. George MM, New MI, Ten S, Sultan C, Bhangoo A. The clinical and molecular heterogeneity of 17betaHSD-3 enzyme deficiency. Hormone Res Paediatr. 2010;74(4):229–40.

    Article  CAS  Google Scholar 

  54. Mahendroo MS, Cala KM, Russell DW. 5 alpha-reduced androgens play a key role in murine parturition. Mol Endocrinol. 1996;10(4):380–92.

    CAS  PubMed  Google Scholar 

  55. Mahendroo MS, Cala KM, Landrum DP, Russell DW. Fetal death in mice lacking 5alpha-reductase type 1 caused by estrogen excess. Mol Endocrinol. 1997;11(7):917–27.

    CAS  PubMed  Google Scholar 

  56. Kondo KH, Kai MH, Setoguchi Y, Eggertsen G, Sjoblom P, Setoguchi T, Okuda KI, Bjorkhem I. Cloning and expression of cDNA of human delta 4-3-oxosteroid 5 beta-reductase and substrate specificity of the expressed enzyme. Eur J Biochem FEBS. 1994;219(1–2):357–63.

    Article  CAS  Google Scholar 

  57. Fuda H, Lee YC, Shimizu C, Javitt NB, Strott CA. Mutational analysis of human hydroxysteroid sulfotransferase SULT2B1 isoforms reveals that exon 1B of the SULT2B1 gene produces cholesterol sulfotransferase, whereas exon 1A yields pregnenolone sulfotransferase. J Biol Chem. 2002;277(39):36161–6.

    Article  CAS  PubMed  Google Scholar 

  58. Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y, Pedersen LC. Structure and function of sulfotransferases. Arch Biochem Biophys. 2001;390(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki T, Miki Y, Nakamura Y, Ito K, Sasano H. Steroid sulfatase and estrogen sulfotransferase in human carcinomas. Mol Cell Endocrinol. 2011;340(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  60. Purohit A, Woo LW, Potter BV. Steroid sulfatase: a pivotal player in estrogen synthesis and metabolism. Mol Cell Endocrinol. 2011;340(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  61. Yen PH, Li XM, Tsai SP, Johnson C, Mohandas T, Shapiro LJ. Frequent deletions of the human X chromosome distal short arm result from recombination between low copy repetitive elements. Cell. 1990;61(4):603–10.

    Article  CAS  PubMed  Google Scholar 

  62. Ballabio A, Carrozzo R, Parenti G, Gil A, Zollo M, Persico MG, Gillard E, Affara N, Yates J, Ferguson-Smith MA, et al. Molecular heterogeneity of steroid sulfatase deficiency: a multicenter study on 57 unrelated patients, at DNA and protein levels. Genomics. 1989;4(1):36–40.

    Article  CAS  PubMed  Google Scholar 

  63. Albert C, Barbier O, Vallee M, Beaudry G, Belanger A, Hum DW. Distribution of uridine diphosphate-glucuronosyltransferase (UGT) expression and activity in cynomolgus monkey tissues: evidence for differential expression of steroid-conjugating UGT enzymes in steroid target tissues. Endocrinology. 2000;141(7):2472–80.

    Article  CAS  Google Scholar 

  64. Turgeon D, Carrier JS, Levesque E, Hum DW, Belanger A. Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members. Endocrinology. 2001;142(2):778–87.

    Article  CAS  Google Scholar 

  65. Levesque E, Turgeon D, Carrier JS, Montminy V, Beaulieu M, Belanger A. Isolation and characterization of the UGT2B28 cDNA encoding a novel human steroid conjugating UDP-glucuronosyltransferase. Biochemistry. 2001;40(13):3869–81.

    Article  CAS  PubMed  Google Scholar 

  66. Kohalmy K, Vrzal R. Regulation of phase II biotransformation enzymes by steroid hormones. Curr Drug Metab. 2011;12(2):104–23.

    Article  CAS  PubMed  Google Scholar 

  67. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  CAS  PubMed  Google Scholar 

  68. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev. 2002;23(6):787–823.

    Article  CAS  PubMed  Google Scholar 

  69. Bilezikjian LM, Blount AL, Leal AM, Donaldson CJ, Fischer WH, Vale WW. Autocrine/paracrine regulation of pituitary function by activin, inhibin and follistatin. Mol Cell Endocrinol. 2004;225(1–2):29–36.

    Article  CAS  PubMed  Google Scholar 

  70. de Kretser DM, Hedger MP, Loveland KL, Phillips DJ. Inhibins, activins and follistatin in reproduction. Human Reprod Update. 2002;8(6):529–41.

    Article  Google Scholar 

  71. Schneyer AL, Fujiwara T, Fox J, Welt CK, Adams J, Messerlian GM, Taylor AE. Dynamic changes in the intrafollicular inhibin/activin/follistatin axis during human follicular development: relationship to circulating hormone concentrations. J Clin Endocrinol Metab. 2000;85(9):3319–30.

    CAS  PubMed  Google Scholar 

  72. Welt CK, McNicholl DJ, Taylor AE, Hall JE. Female reproductive aging is marked by decreased secretion of dimeric inhibin. J Clin Endocrinol Metab. 1999;84(1):105–11.

    CAS  PubMed  Google Scholar 

  73. Groome NP, Illingworth PJ, O’Brien M, Cooke I, Ganesan TS, Baird DT, McNeilly AS. Detection of dimeric inhibin throughout the human menstrual cycle by two-site enzyme immunoassay. Clin Endocrinol. 1994;40(6):717–23.

    Article  CAS  Google Scholar 

  74. Muttukrishna S, Tannetta D, Groome N, Sargent I. Activin and follistatin in female reproduction. Mol Cell Endocrinol. 2004;225(1–2):45–56.

    Article  CAS  PubMed  Google Scholar 

  75. Xiao S, Robertson DM, Findlay JK. Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells. Endocrinology. 1992;131(3):1009–16.

    Article  CAS  PubMed  Google Scholar 

  76. Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature. 1986;321(6072):776–9.

    Article  CAS  PubMed  Google Scholar 

  77. Muttukrishna S, Knight PG. Inverse effects of activin and inhibin on the synthesis and secretion of FSH and LH by ovine pituitary cells in vitro. J Mol Endocrinol. 1991;6(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  78. Blumenfeld Z, Ritter M. Inhibin, activin, and follistatin in human fetal pituitary and gonadal physiology. Ann N Y Acad Sci. 2001;943:34–48.

    Article  CAS  PubMed  Google Scholar 

  79. Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly BM, Mason AJ, Chin WW, Schwall RH, Vale W. Evidence for an autocrine role of activin B within rat anterior pituitary cultures. Endocrinology. 1991;128(3):1682–4.

    Article  CAS  PubMed  Google Scholar 

  80. Wilson JD, George FW, Griffin JE. The hormonal control of sexual development. Science. 1981;211(4488):1278–84.

    Article  CAS  PubMed  Google Scholar 

  81. Hutson J, Ikawa H, Donahoe PK. The ontogeny of Mullerian inhibiting substance in the gonads of the chicken. J Pediatr Surg. 1981;16(6):822–7.

    Article  CAS  PubMed  Google Scholar 

  82. Rajpert-De Meyts E, Jorgensen N, Graem N, Muller J, Cate RL, Skakkebaek NE. Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab. 1999;84(10):3836–44.

    PubMed  Google Scholar 

  83. Teixeira J, Maheswaran S, Donahoe PK. Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr Rev. 2001;22(5):657–74.

    CAS  PubMed  Google Scholar 

  84. Josso N, Rey RA, Picard JY. Anti-mullerian hormone: a valuable addition to the toolbox of the pediatric endocrinologist. Int J Endocrinol. 2013;2013:674105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology. 1999;140(12):5789–96.

    Article  CAS  Google Scholar 

  86. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, Rose UM, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142(11):4891–9.

    Article  CAS  Google Scholar 

  87. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14.

    CAS  PubMed  Google Scholar 

  88. Al-Qahtani A, Muttukrishna S, Appasamy M, Johns J, Cranfield M, Visser JA, Themmen AP, Groome NP. Development of a sensitive enzyme immunoassay for anti-Mullerian hormone and the evaluation of potential clinical applications in males and females. Clin Endocrinol. 2005;63(3):267–73.

    Article  CAS  Google Scholar 

  89. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, Kramer P, Fauser BC, Themmen AP. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  90. Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, Raine-Fenning N, Campbell BK, Yding Andersen C. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19(8):519–27.

    Article  CAS  PubMed  Google Scholar 

  91. Fauser BC, Van Heusden AM. Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev. 1997;18(1):71–106.

    CAS  PubMed  Google Scholar 

  92. Broer SL, Broekmans FJ, Laven JS, Fauser BC. Anti-Mullerian hormone: ovarian reserve testing and its potential clinical implications. Hum Repod Update. 2014;20(5):688–701.

    Article  CAS  Google Scholar 

  93. de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC. Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril. 2002;77(2):357–62.

    Article  PubMed  Google Scholar 

  94. Hansen KR, Hodnett GM, Knowlton N, Craig LB. Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil Steril. 2011;95(1):170–5.

    Article  PubMed  Google Scholar 

  95. Lie Fong S, Visser JA, Welt CK, de Rijke YB, Eijkemans MJ, Broekmans FJ, Roes EM, Peters WH, Hokken-Koelega AC, Fauser BC, et al. Serum anti-mullerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. J Clin Endocrinol Metab. 2012;97(12):4650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hehenkamp WJ, Looman CW, Themmen AP, de Jong FH, Te Velde ER, Broekmans FJ. Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J Clin Endocrinol Metab. 2006;91(10):4057–63.

    Article  CAS  PubMed  Google Scholar 

  97. Wunder DM, Bersinger NA, Yared M, Kretschmer R, Birkhauser MH. Statistically significant changes of antimullerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil Steril. 2008;89(4):927–33.

    Article  CAS  PubMed  Google Scholar 

  98. Deb S, Campbell BK, Pincott-Allen C, Clewes JS, Cumberpatch G, Raine-Fenning NJ. Quantifying effect of combined oral contraceptive pill on functional ovarian reserve as measured by serum anti-Mullerian hormone and small antral follicle count using three-dimensional ultrasound. Ultrasound in Obstet Gynecol Official J Int Soc Ultrasound Obst Gynecol. 2012;39(5):574–80.

    Article  CAS  Google Scholar 

  99. Dolleman M, Verschuren WM, Eijkemans MJ, Dolle ME, Jansen EH, Broekmans FJ, van der Schouw YT. Reproductive and lifestyle determinants of anti-Mullerian hormone in a large population-based study. J Clin Endocrinol Metab. 2013;98(5):2106–15.

    Article  CAS  PubMed  Google Scholar 

  100. Hagen CP, Sorensen K, Anderson RA, Juul A. Serum levels of antimullerian hormone in early maturing girls before, during, and after suppression with GnRH agonist. Fertil Steril. 2012;98(5):1326–30.

    Article  CAS  PubMed  Google Scholar 

  101. Freeman EW, Gracia CR, Sammel MD, Lin H, Lim LC, Strauss JF 3rd. Association of anti-mullerian hormone levels with obesity in late reproductive-age women. Fertil Steril. 2007;87(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  102. Seifer DB, Golub ET, Lambert-Messerlian G, Benning L, Anastos K, Watts DH, Cohen MH, Karim R, Young MA, Minkoff H, et al. Variations in serum mullerian inhibiting substance between white, black, and Hispanic women. Fertil Steril. 2009;92(5):1674–8.

    Article  PubMed  Google Scholar 

  103. Dennis NA, Houghton LA, Jones GT, van Rij AM, Morgan K, McLennan IS. The level of serum anti-Mullerian hormone correlates with vitamin D status in men and women but not in boys. J Clin Endocrinol Metab. 2012;97(7):2450–5.

    Article  CAS  PubMed  Google Scholar 

  104. Kevenaar ME, Themmen AP, Rivadeneira F, Uitterlinden AG, Laven JS, van Schoor NM, Lips P, Pols HA, Visser JA. A polymorphism in the AMH type II receptor gene is associated with age at menopause in interaction with parity. Hum Reprod. 2007;22(9):2382–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nao Suzuki MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Takae, S., Suzuki, N. (2017). Ovarian Endocrinology. In: Chian, RC., Nargund, G., Huang, J. (eds) Development of In Vitro Maturation for Human Oocytes. Springer, Cham. https://doi.org/10.1007/978-3-319-53454-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53454-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53452-7

  • Online ISBN: 978-3-319-53454-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics