Skip to main content

Collisions of Birds of Prey with Wind Turbines—Analysis of the Circumstances

  • Chapter
  • First Online:
Birds of Prey and Wind Farms
  • 706 Accesses

Abstract

We analysed the data of reported avian collisions with wind energy facilities in Germany between 1989 and end of 2008. Species, age and population density of collision victims, technical specifications of wind turbines as well as season, weather conditions, landscape and land use in the surrounding area were taken into account. The influences of these factors on the collision risk were analysed in analyses of variance and by means of multivariate statistics. In relation to their population size in Germany birds of prey such as white-tailed sea eagles and red kite can disproportionately often be found among collision victims. Large turbines with a larger rotor swept area cause higher collision risks than small ones, but the overall collision risk per megawatt generated power is decreasing with increasing turbine size. Landscape structures in the surrounding area as well as land use have a significant influence on the collision risk. Among others, wind turbines surrounded by arable fields were more frequently reported as locations of a collision than wind turbines surrounded by grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baerwald EF, D’Amours G, Klug B, Barclay R (2008) Barotrauma is a significant cause of bat fatalities at wind turbines. Curr Biol 18:695–696

    Google Scholar 

  • Barclay RMR, Baerwald EF, Gruver JC (2007) Variation in bat and bird fatalities at wind energy facilities: assessing the effects of rotor size and tower height. Can J Zool 85:381–387

    Google Scholar 

  • Barrios L, Rodriguez A (2004) Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J Appl Ecol 41:72–81

    Google Scholar 

  • Baum R, Baum S (2011) Wiesenweihen in der Falle. Beobachtungen in einem ostfriesi-schen Windpark. Falke 58:230–233

    Google Scholar 

  • Böttger M, Clemens T, Grote G, Hartmann G, Hartwig E, Lammen C, & Vauk-Hentzelt E (1990). Biologisch-ökologische Begleituntersuchungen zum Bau und Betrieb von Windkraftanlagen - Endbericht. NNA-Ber. 3 Jg./Sonderheft, Schneverdingen, pp 124

    Google Scholar 

  • Bevanger K, Clausen S, Fragstad Ø, Follestad A, Gjershaug JO, Halley D, Hanssen F, Lund Hoel P, Jacobsen K-O, Johnsen L, May R, Nygård T, Pedersen HC, Reitan O, Steinheim Y, Vang R (2008) Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway. Progress Report 2008, NINA Report 409, Trondheim, pp 55

    Google Scholar 

  • Drewitt AL, Langston RHW (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42

    Google Scholar 

  • Everaert J (2003) Windturbines en vogels in Vlaanderen: Voorlopige onderzoeksresultaten en aanbevelingen (Wind turbines and birds in Flanders: Preliminary study results and recommendations). Natuur Oriolus 69:145–155

    Google Scholar 

  • GeoContent International GmbH (2009) http://www.geocontent.de

  • Hammer O, Harper DAT (2005) Paleontological data analysis. Wiley-Blackwell, Malden, pp 368

    Google Scholar 

  • Hötker H, Thomsen K-M, Jeromin H (2006) Impacts on biodiversity of exploitation of renewable energy sources: the example of birds and bats – facts, gaps of knowledge, demands for further research, and ornithological guidelines for the development of renewable energy exploitation. Michael-Otto-Institut im NABU, Bergenhusen

    Google Scholar 

  • Keiler J (2008) Windkraft Betreiber-Datenbasis: Register/Errichtungsdaten deutscher Windanlagen. http://www.btrdb.de/. Assessed 30 June 2010

  • de Lucas M, Janss GFE, Whitfield DP, Ferrer M (2008) Collision fatality of raptors in wind farms does not depend on raptor abundance. J Appl Ecol 45: 1695–1703

    Google Scholar 

  • Madders M, Whitfield PD (2006) Upland raptors and the assessment of wind farm im-pacts. Ibis 148:43–56

    Google Scholar 

  • Möckel R, Wiesner T (2007) Zur Wirkung von Windkraftanlagen auf Brut- und Gastvögel in der Niederlausitz (Land Brandenburg). Otis 15:1–133

    Google Scholar 

  • Percival SM (2005) Birds and windfarms: what are the real issues? Brit Birds 98:194–204

    Google Scholar 

  • R development core team (2008): http://www.r-project.org/

  • Scheller W, Küsters E (1999) Flughöhen von Greifvögeln und Vogelschläge in Deutsch-land. Vogel und Luftverkehr 2/99:76–96

    Google Scholar 

  • Scherner ER (1999) Windkraftanlagen und „wertgebende Vogelbestände “bei Bremerhaven: Realität oder Realsatire. Beiträge zur Naturkunde Niedersachsens, 52(4):121–156

    Google Scholar 

  • Smallwood SK, Neher L (2004) Repowering the APWRA: forecasting and minimizing avian mortality without significant loss of powergeneration. Califonia Energy Commission, PIER Energy‐Related Environmental Research, CEC‐500‐2005‐005

    Google Scholar 

  • Smallwood SK, Thelander CG (2004) Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final Report by BioResource Consultants to the California Energy Commission, Public Interest Energy Research-Environmental Area, Contract No. 500-01-019

    Google Scholar 

  • Smallwood KS, Thelander CG (2008) Bird Mortality in the Altamont Pass Wild Resource Area, California. J Wildlife Manage 72:215–223

    Google Scholar 

  • Strickland D, Erickson W, Young D, Johnson G (2007) Selecting study designs to evaluate the effect of windpower on birds. In: de Lucas M, Janss G, Ferrer M. (eds) Birds and Wind Power. Quercus, Madrid, p 117–136

    Google Scholar 

  • Südbeck P, Bauer H-G, Boschert M, Boye P, Knief W (2007) Rote Liste der Brutvögel Deutschlands. 4. Fassung. Berichte zum Vogelschutz 44:23–81

    Google Scholar 

  • Volland S (2008) Haben Windenergieanlagen (WKA) einen Einfluss auf Kleinsäugerbestände der Umgebung? Master thesis, Paris Lodron University of Salzburg and Museum für Naturkunde der Humboldt-Universität zu Berlin, pp 83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Rasran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rasran, L., Dürr, T. (2017). Collisions of Birds of Prey with Wind Turbines—Analysis of the Circumstances. In: Hötker, H., Krone, O., Nehls, G. (eds) Birds of Prey and Wind Farms. Springer, Cham. https://doi.org/10.1007/978-3-319-53402-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53402-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53401-5

  • Online ISBN: 978-3-319-53402-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics