Skip to main content

MSC Populations for Cartilage Regeneration

  • Chapter
  • First Online:
Cartilage

Abstract

Adult mesenchymal stem cells (MSCs) have an excellent capacity to repair tissues since they can proliferate and differentiate to form various tissues, cartilage included. Moreover, MSCs are potentially accessible in high quantities with low donor site morbidity and reasonable cartilage-forming capacity. In 1998, Johnstone et al. (Exp Cell Res 238(1):265–272) were the first that proposed an effective protocol to chondrogenically differentiate MSCs by using transforming growth factor-β (TGF-β), now used by many groups in the world and since then hardly changed. However, MSCs are a heterogeneous population, and the amount and type of cartilage formed are strongly influenced by intra- and inter-donor variation. In this chapter, we mainly focused on surface markers and their modulation by growth factors. We aim to first clarify the characteristics and the embryonic origin of cartilage progenitor cells (chondroprogenitor), then to summarize the characteristics and the contribution to cartilage repair by MSCs from different origins both in vivo and in vitro, and finally, to show a few examples of promoting articular cartilage phenotype by growth factor administration, in relation to the modulation of surface marker expression. With the exception of the next section focused on embryology, our interest was posed specifically on MSCs from human origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alegre-Aguaron E, Desportes P, Garcia-Alvarez F, Castiella T, Larrad L, Martinez-Lorenzo MJ (2012) Differences in surface marker expression and chondrogenic potential among various tissue-derived mesenchymal cells from elderly patients with osteoarthritis. Cells Tissues Organs 196(3):231–240. doi:10.1159/000334400

    CAS  PubMed  Google Scholar 

  • Almeida HV, Cunniffe GM, Vinardell T, Buckley CT, O’Brien FJ, Kelly DJ (2015) Coupling freshly isolated CD44(+) infrapatellar fat pad-derived stromal cells with a TGF-beta3 eluting cartilage ECM-derived scaffold as a single-stage strategy for promoting chondrogenesis. Adv Healthc Mater 4(7):1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50(5):1522–1532. doi:10.1002/art.20269

    Article  PubMed  Google Scholar 

  • Alvarez-Viejo M, Menendez-Menendez Y, Otero-Hernandez J (2015) CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells 7(2):470–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Arufe MC, De la Fuente A, Fuentes-Boquete I, De Toro FJ, Blanco FJ (2009) Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. J Cell Biochem 108(1):145–155. doi:10.1002/jcb.22238

    Article  CAS  PubMed  Google Scholar 

  • Arufe MC, De la Fuente A, Fuentes I, de Toro FJ, Blanco FJ (2010) Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem 111(4):834–845. doi:10.1002/jcb.22768

    Article  CAS  PubMed  Google Scholar 

  • Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 28(6):707–715

    Article  CAS  PubMed  Google Scholar 

  • Barbero A, Ploegert S, Heberer M, Martin I (2003) Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum 48(5):1315–1325. doi:10.1002/art.10950

    Article  CAS  PubMed  Google Scholar 

  • Battula VL, Treml S, Bareiss PM, Gieseke F, Roelofs H, de Zwart P, Muller I, Schewe B, Skutella T, Fibbe WE, Kanz L, Buhring HJ (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94(2):173–184

    Article  CAS  PubMed  Google Scholar 

  • Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. doi:10.1186/1471-2121-7-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  PubMed  CAS  Google Scholar 

  • Candela ME, Cantley L, Yasuaha R, Iwamoto M, Pacifici M, Enomoto-Iwamoto M (2014) Distribution of slow-cycling cells in epiphyseal cartilage and requirement of beta-catenin signaling for their maintenance in growth plate. J Orthop Res 32(5):661–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CB, Han SA, Kim EM, Lee S, Seong SC, Lee MC (2013) Chondrogenic potentials of human synovium-derived cells sorted by specific surface markers. Osteoarthritis Cartilage 21(1):190–199

    Article  CAS  PubMed  Google Scholar 

  • Cleary MA, Narcisi R, Focke K, van der Linden R, Brama PA, van Osch GJ (2016) Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthritis Cartilage 24(5):868–872. doi:10.1016/j.joca.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  • Craig FM, Bentley G, Archer CW (1987) The spatial and temporal pattern of collagens I and II and keratan sulphate in the developing chick metatarsophalangeal joint. Development 99(3):383–391

    CAS  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942

    Article  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Luyten FP (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50(1):142–150. doi:10.1002/art.11450

    Article  PubMed  CAS  Google Scholar 

  • Decker RS, Koyama E, Pacifici M (2014) Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol 39:5–10. doi:10.1016/j.matbio.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  • Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, Rosset P, Sensebe L, Layrolle P, Haupl T, Charbord P (2008) Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111(5):2631–2635

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente R et al. (2004) Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Exp Cell Res 297(2):313–28

    Google Scholar 

  • Ding DC, Wu KC, Chou HL, Hung WT, Liu HW, Chu TY (2015) Human infrapatellar fat pad-derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by Hyaluronan. Cell Transplant 24(7):1221–1232. doi:10.3727/096368914X681937

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117(Pt 6):889–897

    Article  CAS  PubMed  Google Scholar 

  • English A, Jones EA, Corscadden D, Henshaw K, Chapman T, Emery P, McGonagle D (2007) A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis. Rheumatology (Oxford) 46(11):1676–1683. doi:10.1093/rheumatology/kem217

    Article  CAS  Google Scholar 

  • Espagnolle N, Guilloton F, Deschaseaux F, Gadelorge M, Sensebe L, Bourin P (2014) CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med 18(1):104–114. doi:10.1111/jcmm.12168

    Article  CAS  PubMed  Google Scholar 

  • Fickert S, Fiedler J, Brenner RE (2003) Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage 11(11):790–800

    Article  CAS  PubMed  Google Scholar 

  • Fickert S, Fiedler J, Brenner RE (2004) Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 6(5):R422–R432. doi:10.1186/ar1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukiage K, Aoyama T, Shibata KR, Otsuka S, Furu M, Kohno Y, Ito K, Jin Y, Fujita S, Fujibayashi S, Neo M, Nakayama T, Nakamura T, Toguchida J (2008) Expression of vascular cell adhesion molecule-1 indicates the differentiation potential of human bone marrow stromal cells. Biochem Biophys Res Commun 365(3):406–412. doi:10.1016/j.bbrc.2007.10.149

    Article  CAS  PubMed  Google Scholar 

  • Gharibi B, Hughes FJ (2012) Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl Med 1(11):771–782. doi:10.5966/sctm.2010-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan SP, Barbero A, Diaz-Romero J, Cleton-Jansen AM, Soeder S, Whiteside R, Hogendoorn PC, Farhadi J, Aigner T, Martin I, Mainil-Varlet P (2007) Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum 56(2):586–595

    Article  PubMed  Google Scholar 

  • Grogan SP, Miyaki S, Asahara H, D’Lima DD, Lotz MK (2009) Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11(3):R85. doi:10.1186/ar2719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116(Pt 9):1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Hagmann S, Moradi B, Frank S, Dreher T, Kammerer PW, Richter W, Gotterbarm T (2013a) Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. BMC Musculoskelet Disord 14:223. doi:10.1186/1471-2474-14-223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagmann S, Moradi B, Frank S, Dreher T, Kammerer PW, Richter W, Gotterbarm T (2013b) FGF-2 addition during expansion of human bone marrow-derived stromal cells alters MSC surface marker distribution and chondrogenic differentiation potential. Cell Prolif 46(4):396–407. doi:10.1111/cpr.12046

    Article  CAS  PubMed  Google Scholar 

  • Hagmann S, Frank S, Gotterbarm T, Dreher T, Eckstein V, Moradi B (2014) Fluorescence activated enrichment of CD146+ cells during expansion of human bone-marrow derived mesenchymal stromal cells augments proliferation and GAG/DNA content in chondrogenic media. BMC Musculoskelet Disord 15:322. doi:10.1186/1471-2474-15-322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han SA, Lee S, Seong SC, Lee MC (2014) Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells. Tissue Eng Part A 20(19-20):2680–2691. doi:10.1089/ten.TEA.2013.0656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harichandan A, Buhring HJ (2011) Prospective isolation of human MSC. Best Pract Res Clin Haematol 24(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Harichandan A, Sivasubramaniyan K, Buhring HJ (2013) Prospective isolation and characterization of human bone marrow-derived MSCs. Adv Biochem Eng Biotechnol 129:1–17

    CAS  PubMed  Google Scholar 

  • Harvanova D, Tothova T, Sarissky M, Amrichova J, Rosocha J (2011) Isolation and characterization of synovial mesenchymal stem cells. Folia Biol (Praha) 57(3):119–124

    CAS  Google Scholar 

  • Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol 203(6):469–479

    Article  CAS  PubMed  Google Scholar 

  • Hermida-Gomez T, Fuentes-Boquete I, Gimeno-Longas MJ, Muinos-Lopez E, Diaz-Prado S, de Toro FJ, Blanco FJ (2011) Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects. Tissue Eng Part A 17(7-8):1169–1179. doi:10.1089/ten.TEA.2010.0346

    Article  CAS  PubMed  Google Scholar 

  • Holder N (1977) An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol 39:115–127

    CAS  PubMed  Google Scholar 

  • Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78(5):721–733

    Article  CAS  PubMed  Google Scholar 

  • Hunziker EB, Kapfinger E, Geiss J (2007) The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage 15(4):403–413

    Article  CAS  PubMed  Google Scholar 

  • Hyde G, Boot-Handford RP, Wallis GA (2008) Col2a1 lineage tracing reveals that the meniscus of the knee joint has a complex cellular origin. J Anat 213(5):531–538. doi:10.1111/j.1469-7580.2008.00966.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Im GI (2016) Endogenous cartilage repair by recruitment of stem cells. Tissue Eng Part B Rev 22:160–171

    Article  PubMed  Google Scholar 

  • Jiang Y, Tuan RS (2015) Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol 11(4):206–212

    Article  PubMed  Google Scholar 

  • Jiang Y, Hu C, Yu S, Yan J, Peng H, Ouyang HW, Tuan RS (2015) Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1beta/nerve growth factor signaling. Arthritis Res Ther 17:327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jo CH, Ahn HJ, Kim HJ, Seong SC, Lee MC (2007) Surface characterization and chondrogenic differentiation of mesenchymal stromal cells derived from synovium. Cytotherapy 9(4):316–327. doi:10.1080/14653240701291620

    Article  CAS  PubMed  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272. doi:10.1006/excr.1997.3858

    Article  CAS  PubMed  Google Scholar 

  • Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50(3):817–827. doi:10.1002/art.20203

    Article  PubMed  Google Scholar 

  • Jones EA, English A, Kinsey SE, Straszynski L, Emery P, Ponchel F, McGonagle D (2006) Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow. Cytometry B Clin Cytom 70(6):391–399. doi:10.1002/cyto.b.20118

    Article  PubMed  CAS  Google Scholar 

  • Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D, Chapman T, Emery P, Hatton P, McGonagle D (2008) Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 58(6):1731–1740

    Article  CAS  PubMed  Google Scholar 

  • Jones E, Churchman SM, English A, Buch MH, Horner EA, Burgoyne CH, Reece R, Kinsey S, Emery P, McGonagle D, Ponchel F (2010) Mesenchymal stem cells in rheumatoid synovium: enumeration and functional assessment in relation to synovial inflammation level. Ann Rheum Dis 69(2):450–457. doi:10.1136/ard.2008.106435

    Article  CAS  PubMed  Google Scholar 

  • Jurgens WJ, van Dijk A, Doulabi BZ, Niessen FB, Ritt MJ, van Milligen FJ, Helder MN (2009) Freshly isolated stromal cells from the infrapatellar fat pad are suitable for a one-step surgical procedure to regenerate cartilage tissue. Cytotherapy 11(8):1052–1064

    Article  CAS  PubMed  Google Scholar 

  • Kaltz N, Ringe J, Holzwarth C, Charbord P, Niemeyer M, Jacobs VR, Peschel C, Haupl T, Oostendorp RA (2010) Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources. Exp Cell Res 316(16):2609–2617. doi:10.1016/j.yexcr.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  • Karystinou A et al. (2009) Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology (Oxford) 48(9):1057–64. doi:10.1093/rheumatology/kep192

  • Khan WS, Adesida AB, Hardingham TE (2007) Hypoxic conditions increase hypoxia-inducible transcription factor 2alpha and enhance chondrogenesis in stem cells from the infrapatellar fat pad of osteoarthritis patients. Arthritis Res Ther 9(3):R55. doi:10.1186/ar2211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan WS, Tew SR, Adesida AB, Hardingham TE (2008) Human infrapatellar fat pad-derived stem cells express the pericyte marker 3G5 and show enhanced chondrogenesis after expansion in fibroblast growth factor-2. Arthritis Res Ther 10(4):R74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan IM, Bishop JC, Gilbert S, Archer CW (2009) Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthritis Cartilage 17(4):518–528. doi:10.1016/j.joca.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  • Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE (2012) Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif 45(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X, Miosge N (2009) Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4(4):324–335

    Article  CAS  PubMed  Google Scholar 

  • Koyama E, Ochiai T, Rountree RB, Kingsley DM, Enomoto-Iwamoto M, Iwamoto M, Pacifici M (2007) Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann N Y Acad Sci 1116:100–112. doi:10.1196/annals.1402.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer J, Bohrnsen F, Lindner U, Behrens P, Schlenke P, Rohwedel J (2006) In vivo matrix-guided human mesenchymal stem cells. Cell Mol Life Sci 63(5):616–626

    Article  CAS  PubMed  Google Scholar 

  • Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA (2012) Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLoS One 7(8):e43616. doi:10.1371/journal.pone.0043616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurose R, Ichinohe S, Tajima G, Horiuchi S, Kurose A, Sawai T, Shimamura T (2010) Characterization of human synovial fluid cells of 26 patients with osteoarthritis knee for cartilage repair therapy. Int J Rheum Dis 13(1):68–74. doi:10.1111/j.1756-185X.2009.01456.x

    Article  PubMed  Google Scholar 

  • Kurth TB, Dell’accio F, Crouch V, Augello A, Sharpe PT, De Bari C (2011) Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum 63(5):1289–1300

    Article  PubMed  Google Scholar 

  • Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376(9739):440–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Sonn CH, Han SB, Oh Y, Lee KM, Lee SH (2012) Synovial fluid CD34(-) CD44(+) CD90(+) mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage 20(2):106–109

    Article  CAS  PubMed  Google Scholar 

  • Li T, Longobardi L, Myers TJ, Temple JD, Chandler RL, Ozkan H, Contaldo C, Spagnoli A (2013) Joint TGF-beta type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev 22(9):1342–1359. doi:10.1089/scd.2012.0207

    Article  CAS  PubMed  Google Scholar 

  • Longobardi L, Li T, Myers TJ, O’Rear L, Ozkan H, Li Y, Contaldo C, Spagnoli A (2012) TGF-beta type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell 23(1):71–81. doi:10.1016/j.devcel.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopa S, Colombini A, Stanco D, de Girolamo L, Sansone V, Moretti M (2014) Donor-matched mesenchymal stem cells from knee infrapatellar and subcutaneous adipose tissue of osteoarthritic donors display differential chondrogenic and osteogenic commitment. Eur Cell Mater 27:298–311

    Article  CAS  PubMed  Google Scholar 

  • López-Ruiz E et al. (2013) Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells. Osteoarthritis Cartilage 21(1):246–58. doi:10.1016/j.joca.2012.10.007

  • Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419

    Article  CAS  PubMed  Google Scholar 

  • Majumdar MK, Banks V, Peluso DP, Morris EA (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185 (1):98-106. doi:10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1. pii: 1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1

    Google Scholar 

  • Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138(10):4456–4462. doi:10.1210/endo.138.10.5425

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109(10):4245–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastrogiacomo M, Cancedda R, Quarto R (2001) Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage 9(Suppl A):S36–S40

    Article  PubMed  Google Scholar 

  • Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I (2014) Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res 472(5):1357–1364. doi:10.1007/s11999-013-3418-4

    Article  PubMed  Google Scholar 

  • Mifune Y, Matsumoto T, Murasawa S, Kawamoto A, Kuroda R, Shoji T, Kuroda T, Fukui T, Kawakami Y, Kurosaka M, Asahara T (2013) Therapeutic superiority for cartilage repair by CD271-positive marrow stromal cell transplantation. Cell Transplant 22(7):1201–1211. doi:10.3727/096368912X657378

    Article  PubMed  Google Scholar 

  • Mochizuki T, Muneta T, Sakaguchi Y, Nimura A, Yokoyama A, Koga H, Sekiya I (2006) Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 54(3):843–853. doi:10.1002/art.21651

    Article  CAS  PubMed  Google Scholar 

  • Morito T, Muneta T, Hara K, Ju YJ, Mochizuki T, Makino H, Umezawa A, Sekiya I (2008) Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford) 47(8):1137–1143

    Article  CAS  Google Scholar 

  • Muller B, Kohn D (1999) [Indication for and performance of articular cartilage drilling using the Pridie method] Indikation und Durchfuhrung der Knorpel-Knochen-Anbohrung nach Pridie. Orthopade 28(1):4–10

    CAS  PubMed  Google Scholar 

  • Nagase T, Muneta T, Ju YJ, Hara K, Morito T, Koga H, Nimura A, Mochizuki T, Sekiya I (2008) Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis. Arthritis Rheum 58(5):1389–1398. doi:10.1002/art.23418

    Article  PubMed  Google Scholar 

  • Nalin AM, Greenlee TK Jr, Sandell LJ (1995) Collagen gene expression during development of avian synovial joints: transient expression of types II and XI collagen genes in the joint capsule. Dev Dyn 203(3):352–362. doi:10.1002/aja.1002030307

    Article  CAS  PubMed  Google Scholar 

  • Narcisi R, Cleary MA, Brama PA, Hoogduijn MJ, Tuysuz N, ten Berge D, van Osch GJ (2015) Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Rep 4(3):459–472. doi:10.1016/j.stemcr.2015.01.017

    Article  CAS  Google Scholar 

  • Nishimura K, Solchaga LA, Caplan AI, Yoo JU, Goldberg VM, Johnstone B (1999) Chondroprogenitor cells of synovial tissue. Arthritis Rheum 42(12):2631–2637

    Article  CAS  PubMed  Google Scholar 

  • Ogata Y, Mabuchi Y, Yoshida M, Suto EG, Suzuki N, Muneta T, Sekiya I, Akazawa C (2015) Purified human synovium mesenchymal stem cells as a good resource for cartilage regeneration. PLoS One 10(6):e0129096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozbey O et al. (2014) Characterization of colony-forming cells in adult human articular cartilage. Acta Histochem116(5):763–70. doi:10.1016/j.acthis.2014.01.004

  • Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, Iwamoto M (2006) Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci 1068:74–86. doi:10.1196/annals.1346.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Pretzel D, Linss S, Rochler S, Endres M, Kaps C, Alsalameh S, Kinne RW (2011) Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Res Ther 13(2):R64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30(7):783–791

    Article  CAS  PubMed  Google Scholar 

  • Richter W (2009) Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med 266(4):390–405

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336. doi:10.1016/j.cell.2007.08.025

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52(8):2521–2529

    Article  PubMed  Google Scholar 

  • Sekiya I, Ojima M, Suzuki S, Yamaga M, Horie M, Koga H, Tsuji K, Miyaguchi K, Ogishima S, Tanaka H, Muneta T (2012) Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res 30(6):943–949

    Article  PubMed  Google Scholar 

  • Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T (2006) In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem 97(1):84–97. doi:10.1002/jcb.20546

    Article  CAS  PubMed  Google Scholar 

  • Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    CAS  PubMed  Google Scholar 

  • Sivasubramaniyan K, Lehnen D, Ghazanfari R, Sobiesiak M, Harichandan A, Mortha E, Petkova N, Grimm S, Cerabona F, de Zwart P, Abele H, Aicher WK, Faul C, Kanz L, Buhring HJ (2012) Phenotypic and functional heterogeneity of human bone marrow- and amnion-derived MSC subsets. Ann N Y Acad Sci 1266:94–106

    Article  PubMed  Google Scholar 

  • Sivasubramaniyan K, Harichandan A, Schumann S, Sobiesiak M, Lengerke C, Maurer A, Kalbacher H, Buhring HJ (2013) Prospective isolation of mesenchymal stem cells from human bone marrow using novel antibodies directed against Sushi domain containing 2. Stem Cells Dev 22(13):1944–1954

    Article  CAS  PubMed  Google Scholar 

  • Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H (2010) Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis 48(11):635–644. doi:10.1002/dvg.20667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Sousa EB, Casado PL, Moura Neto V, Duarte ME, Aguiar DP (2014) Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther 5(5):112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spagnoli A, O’Rear L, Chandler RL, Granero-Molto F, Mortlock DP, Gorska AE, Weis JA, Longobardi L, Chytil A, Shimer K, Moses HL (2007) TGF-beta signaling is essential for joint morphogenesis. J Cell Biol 177(6):1105–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res (391 Suppl):S362–S369

    Google Scholar 

  • Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122(12):3969–3979

    CAS  PubMed  Google Scholar 

  • Swart GW (2002) Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol 81(6):313–321

    Article  CAS  PubMed  Google Scholar 

  • Tong W, Geng Y, Huang Y, Shi Y, Xiang S, Zhang N, Qin L, Shi Q, Chen Q, Dai K, Zhang X (2015) In vivo identification and induction of articular cartilage stem cells by inhibiting NF-kappaB signaling in osteoarthritis. Stem Cells 33(10):3125–3137

    Article  CAS  PubMed  Google Scholar 

  • Tormin A, Li O, Brune JC, Walsh S, Schutz B, Ehinger M, Ditzel N, Kassem M, Scheding S (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117(19):5067–5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288 (2):413-419. doi:10.1006/bbrc.2001.5777. pii: S0006-291X(01)95777-8

  • Ustunel I, Ozenci AM, Sahin Z, Ozbey O, Acar N, Tanriover G, Celik-Ozenci C, Demir R (2008) The immunohistochemical localization of notch receptors and ligands in human articular cartilage, chondroprogenitor culture and ultrastructural characteristics of these progenitor cells. Acta Histochem 110(5):397–407. doi:10.1016/j.acthis.2007.12.005

    Article  PubMed  Google Scholar 

  • Van Landuyt KB, Jones EA, McGonagle D, Luyten FP, Lories RJ (2010) Flow cytometric characterization of freshly isolated and culture expanded human synovial cell populations in patients with chronic arthritis. Arthritis Res Ther 12(1):R15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F (2003) Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res 412:196–212

    Article  Google Scholar 

  • Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 5(10):e13246. doi:10.1371/journal.pone.0013246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Cigan AD, Marrero L, Lopreore C, Liu S, Ge D, Savoie FH, You Z (2011) Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis 49(2):75–82. doi:10.1002/dvg.20702

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295. doi:10.1091/mbc.E02-02-0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Our work and the writing of this chapter were supported by the Netherlands Institute for Regenerative Medicine (FES0908), the Science Foundation Ireland (11/RFP/BMT/3150), the Translational Adult Stem Cell Research by ZonMw (116005009), a VENI grant from STW (13659), and SmartStep (MRC-MR-L022893).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerjo J. V. M. van Osch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Narcisi, R., Cleary, M.A., Sivasubramaniyan, K., Brama, P.A.J., van Osch, G.J.V.M. (2017). MSC Populations for Cartilage Regeneration. In: Grässel, S., Aszódi, A. (eds) Cartilage. Springer, Cham. https://doi.org/10.1007/978-3-319-53316-2_2

Download citation

Publish with us

Policies and ethics