Skip to main content

Exercise and Male Hypogonadism: Testosterone, the Hypothalamic-Pituitary-Testicular Axis, and Exercise Training

  • Chapter
  • First Online:
Male Hypogonadism

Abstract

The large improvement in sporting performances in recent decades is partly due to the volume of training that athletes are undertaking. In response to exercise training, testosterone will acutely increase, decrease or have no change in concentration, depending on many factors including exercise modality, intensity, and duration. Exercise training places a tremendous amount of stress on the body, and if excessive or not managed appropriately, it can compromise an athlete’s health and performance. As a result, the endocrine system can become disrupted, Male athletes with chronic training overload may develop the exercise-hypogonadal male condition with a corresponding reduction in resting testosterone levels, possibly due to both central and peripheral regulatory compromises. In addition to low testosterone, these males also exhibit a lack of corresponding luteinizing hormone secretion. Moreover and regrettably, athletes at all levels of competition have been recorded as using exogenous anabolic-androgenic steroids, leading to a pseudo-hypogonadism state. Although rare, some athletes are candidates for testosterone replacement therapy for medical conditions, however physicians should be aware of the sanctioned and permitted use of exogenous hormones by athletes as dictated by the World Anti-Doping Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raglin J, Barzdukas A. Overtraining in athletes: the challenge of prevention—a consensus statement. Health & Fitness J. 1999;3:27.

    Google Scholar 

  2. Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc. 1993;25:854–62.

    Article  CAS  PubMed  Google Scholar 

  3. Brooks GA, Fahey TD, White TP. Neural-endocrine control of metabolism. Exercise physiology: human bioenergetics and its application, 2nd ed. Toronto: Mayfield, 1996:144–72.

    Google Scholar 

  4. Hackney AC, Pearman SN, Nowacki JM. Physiological profiles of overtrained athletes: a review. J Appl Sport Psych. 1990;2:21–9.

    Article  Google Scholar 

  5. Fry RW, Morton AR, Keast D. Overtraining in athletes: an update. Sports Med. 1991;12:32–65.

    Article  CAS  PubMed  Google Scholar 

  6. Hackney AC. Endurance training and testosterone levels. Sports Med. 1989;8:117–27.

    Article  CAS  PubMed  Google Scholar 

  7. Hackney AC, Dolny DG, Ness RJ. Comparison of resting reproductive hormonal profiles in select athletic groups. Biology of Sport. 1988;4:200–8.

    Google Scholar 

  8. Kenttä G, Hassmén P. Overtraining and recovery—a conceptual model. Sports Med. 1998;26:1–16.

    Article  PubMed  Google Scholar 

  9. Kuipers H, Keizer HA. Overtraining in elite athletes—review and directions for the future. Sports Med. 1988;6:79–92.

    Article  CAS  PubMed  Google Scholar 

  10. Boyden TW, Paramenter R, Stanforth P, Rotkis TC, Wilmore J. Impaired gonadotropin responses to gonadotropin-releasing hormone stimulation in endurance-trained women. Fertil Steril. 1984;41:359–63.

    Article  CAS  PubMed  Google Scholar 

  11. Dale E, Gerlach D, Whilhite AL. Menstrual dysfunction in distance runners. Obstet Gynecol. 1974;54:47.

    Article  Google Scholar 

  12. Loucks AB. Exercise training in the normal female: effects of exercise stress and energy availability on metabolic hormones and LH pulsatility. In: Warren MP, Constantini NW, editors. Sports Endocrinology. Totowa: Humana Press; 2000. p. 165–80.

    Google Scholar 

  13. Tietz NW. Clinical guide to laboratory tests. Philadelphia: Saunders, 1990: 284, 314–45.

    Google Scholar 

  14. Taber’s Medical Dictionary, 14th ed. Philadelphia: F A Davis Co., 1983.

    Google Scholar 

  15. Hackney AC, Moore AW, Brownlee KK. Testosterone and endurance exercise: development of the “exercise-hypogonadal male condition”. Acta Physiol Hung. 2005;92(2):121–237.

    Article  CAS  PubMed  Google Scholar 

  16. Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Invest. 2008;31(10):932–8.

    Article  CAS  PubMed  Google Scholar 

  17. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34(8):513–54.

    Article  PubMed  Google Scholar 

  18. Petit MA, Prior JC. Exercise and the hypothalamus: ovulatory adaptations. In: Warren MP, Constantini NW, editors. Sports Endocrinology. Totowa: Humana Press; 2000. p. 133–63.

    Google Scholar 

  19. Griffin JE, Wilson JD. Disorders of the testes and the male reproductive tracts. In: Wilson JD, editor. Williams textbook of endocrinology. Philadelphia: Saunders; 1992. p. 799–852.

    Google Scholar 

  20. Newshole EA. Biochemistry for the medical sciences. London: Wiley & Son; 1983. p. 711–33.

    Google Scholar 

  21. Arce JC, DeSouza M.J. Exercise and male factor infertility. Sports Med 1993;15:146–69.

    Google Scholar 

  22. Zitzmann M, Nieschlag E. Testosterone levels in healthy men in relation to behavioural and physical characteristics: facts and constructs. Eur J Endocrinol. 2001;144:183–97.

    Article  CAS  PubMed  Google Scholar 

  23. Christiansen K. Behavioral effects of androgen in men and women. J Endocrinol. 2001;170:39–48.

    Article  CAS  PubMed  Google Scholar 

  24. Marcell TJ, Harman SM, Urban RJ, Metz DD, Rodgers BD, Blackman MR. Comparison of GH, IGF-1, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men. Am J Physiol Endocrinol Metab. 2001;281:E1159–64.

    CAS  PubMed  Google Scholar 

  25. Widmaier EP. Metabolic feedback in mammalian endocrine systems. Horm Metab Res. 1992;24:147–53.

    Article  CAS  PubMed  Google Scholar 

  26. Eik-Nes KB. On the relationship between testicular blood flow and the secretion of testosterone. Can J Physiol Pharmacol. 1964;42:671–2.

    Article  CAS  PubMed  Google Scholar 

  27. Hackney AC. The male reproductive system and endurance exercise. Med Sci Sports Exerc. 1996;28:180–9.

    Article  CAS  PubMed  Google Scholar 

  28. Viru A. Hormonal ensemble in exercise—hormones in muscular activity, vol. 1. Boca Raton: CRC; 1985. p. 7–88.

    Google Scholar 

  29. Cadoux-Hudson TA, Few JD, Imms FJ. The effect of exercise on the production and clearance of testosterone in well trained young men. Eur J Appl Physiol 195; 54:321–5.

    Google Scholar 

  30. Keizer HA, Poortman J, Bunnik GS. Influence of physical exercise on sex-hormone metabolism. J Appl Physiol. 1980;48:765–9.

    CAS  PubMed  Google Scholar 

  31. Southren AL, Gordon GG, Tochimoto S. Further study of factors affecting the metabolic clearance rate of testosterone in man. J Clin Endocrinol Metab. 1968;28(8):1105–12.

    Article  CAS  PubMed  Google Scholar 

  32. Kuoppasalmi K, Maveri H, Rehunen S, Harkonen M, Adlercreutz H. Effect of strenuous anaerobic running on plasma growth hormone, cortisol, luteinizing hormone, testosterone, androstenedione and estrone and estradiol. J Steroid Biochem. 1976;7:823–9.

    Article  CAS  PubMed  Google Scholar 

  33. Schmid P, Pusch PP, Wolf WW, Pilger E, Pessenhofer H, Schwaberger G, Pristautz H, Pürstner P. Serum FSH, LH and testosterone in humans after physical exercise. Int J Sports Med 1982;384–89.

    Google Scholar 

  34. Metivier G, Gauthier R, de la Chevotriere J, Grymala D. The effect of acute exercise on the serum levels of testosterone and luteinizing (LH) hormone in human male athletes. J Sports Med Phys Fit. 1980;20:235–7.

    CAS  Google Scholar 

  35. Zmuda JM, Thompson PD, Winters SJ. Exercise increases serum testosterone and sex hormone-binding globulin levels in older men. Metabolism. 1996;45(8):935–9.

    Article  CAS  PubMed  Google Scholar 

  36. McMurray RG, AC Hackney. Endocrine responses to exercise and training. In: Garrett W, DT Kirkendall editors. Exercise and Sport Science. Philadelphia: Lippincott, Williams & Wilkins, 2000:135–62.

    Google Scholar 

  37. Hackney AC. Testosterone, the hypothalamo-pituitary-testicular axis and endurance exercise training: a review. Biol Sport. 1996;13:85–98.

    Google Scholar 

  38. Cumming DC. The male reproductive system, exercise and training. In: Warren MP, Constantini NW, editors. Sports Endocrinology. Totowa: Humana Press; 2000. p. 119–32.

    Google Scholar 

  39. Aakvaag A, Sand T, Opstad PK, Fonnum F. Hormonal changes in serum in young men during prolonged physical strain. Eur J Appl Physiol Occup Physiol. 1978;39:283–91.

    Article  CAS  PubMed  Google Scholar 

  40. Hackney AC, Fahrner CL, Stupnicki R. Reproductive hormonal responses to maximal exercise in endurance-trained men with low resting testosterone levels. Exp Clin Endocrinol Diabetes. 1997;105:291–5.

    Article  CAS  PubMed  Google Scholar 

  41. Kuopposalmi K, Naveri H, Harkonen N, Adlerkreutz H. Plasma cortisol, androstenedione, testosterone and luteinizing hormone in running exercise of various intensities. Scand J Clin Lab Invest. 1980;40:403–9.

    Article  Google Scholar 

  42. DiLuigi L, Guidetti L, Baldari C, Fabbri A, Moretti C, Romanelli F. Physical stress and qualitative gonadotropin secretion: LH biological activity at rest and after exercise in trained and untrained men. Int J Sports Med. 2002;23:307–12.

    Article  CAS  Google Scholar 

  43. Hackney AC, Ness RJ, Schrieber A. Effects of endurance exercise on nocturnal hormone concentrations in males. Chronobiol Int. 1989;6:341–6.

    Article  CAS  PubMed  Google Scholar 

  44. Viru A. Plasma hormones and physical exercise. Int J Sports Med. 1992;13:201–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kindermann W, Schnabel A, Schmitt WM, Biro G, Cassens J, Weber F. Catecholamines, growth hormone, cortisol, insulin and sex hormones in aerobic and anaerobic exercise. Eur J Appl Physiol. 1982;49:389–99.

    Article  CAS  Google Scholar 

  46. Galbo H, Hummer L, Peterson IB, Christensen NJ, Bie N. Thyroid and testicular hormonal responses to graded and prolonged exercise in men. Eur J Appl Physiol. 1977;36:101–6.

    Article  CAS  Google Scholar 

  47. Galbo H, Kjaer M, Mikines KJ. Neurohormonal system. In: Skinner J. Corbin CB, Landers DM et al. editors. Future directions in exercise and sport science research. Champaign:Human Kinetics, 1989:339–45.

    Google Scholar 

  48. Kraemer WJ, Patton JF, Knuttgen HG, et al. Hypothalmic-pituitary-adrenal responses to short-duration high-intensity cycle exercise. J Appl Physiol. 1989;66:161–6.

    Article  CAS  PubMed  Google Scholar 

  49. Cumming DC, Wall SR, Galbraith MA, Belcastro A. Reproductive hormone responses to resistance exercise. Med Sci Sports Exerc. 1987;19:234–8.

    Article  CAS  PubMed  Google Scholar 

  50. Guezennec Y, Leger F, Hostr FL, Aymonud M, Pesquies PC. Hormone and metabolite response to weight-lifting training sessions. Int J Sports Med. 1986;7:100–5.

    Article  CAS  PubMed  Google Scholar 

  51. Kraemer WJ. Endocrine response to resistance exercise. Med Sci Sports Exerc. 1988;20:S152–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kujala UM, Alen M, Huhtaniemi IT. Gonadotrophin-releasing hormone and human chronic gonadotrophin tests reveal that both hypothalamic and testicular endocrine functions are suppressed during acute prolonged physical exercise. Clin Endocrinol. 1990;33:219–25.

    Article  CAS  Google Scholar 

  53. Opstad PK. Androgenic hormones during prolonged physical stress, sleep and energy deficiency. J Clin Endocrinol Metab. 1992;74:1176–83.

    CAS  PubMed  Google Scholar 

  54. Opstad PK. The hypothalamic-pituitary regulation of androgen secretion in young men after prolonged physical stress combined with energy and sleep deprivation. Acta Endocrinol. 1992;127:231–6.

    CAS  PubMed  Google Scholar 

  55. Galbo H. Hormonal and metabolic adaptation to exercise. Georg Thieme Stuttgart: Verlag; 1983. p. 2–117.

    Google Scholar 

  56. Gawel MJ, Alaghband-Zadeh J, Park DM, Rose FC. Exercise and hormonal secretion. Postgrad Med J. 1979;55:373–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brisson G, Volle MA, DeCarufel D, Desharnaris D, Tanaka M. Exercise-induced dissociation of the blood prolactin response in young women according to sports habits. Horm Metab Res. 1980;12(5):201–5.

    Article  CAS  PubMed  Google Scholar 

  58. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13:305–11.

    Article  CAS  PubMed  Google Scholar 

  59. Hackney AC, Sharp RL, Runyon W, Ness R. Effects of intensive training on the prolactin response to submaximal exercise in males. J Iowa Acad Sci. 1989;96:52–3.

    Google Scholar 

  60. Noel GL, Suh HK, Stone JG, Frantz AG. Human prolactin and growth hormone release during surgery and other conditions of stress. J Clin Endocrinol Metab. 1972;35:840–51.

    Article  CAS  PubMed  Google Scholar 

  61. Hackney AC, Davis HC, Lane AR. Exercise augments the nocturnal prolactin rise in exercise-trained men. Ther Adv Endocrinol Metab. 2015;6(5):217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc. 1988;20:60–5.

    Article  CAS  PubMed  Google Scholar 

  63. Hackney AC. 2002; Personal communication.

    Google Scholar 

  64. Wheeler GD, Wall SR, Belcastro AN, Cumming DC. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984;252:514–6.

    Article  CAS  PubMed  Google Scholar 

  65. Hackney AC, Fahrner CL, Gulledge TP. Basal reproductive hormonal profiles are altered in endurance trained men. J Sports Med Phys Fitness. 1998;38:138–41.

    CAS  PubMed  Google Scholar 

  66. Gullege TP, Hackney AC. Reproducibility of low resting testosterone concentrations in endurance trained men. Eur J Appl Physiol. 1996;73:582–3.

    Article  Google Scholar 

  67. Hackney AC, Sharp RL, Runyan WS, Ness RJ. Relationship of resting prolactin and testosterone in males during intensive training. Br J Sport Med. 1989;23:194.

    Article  CAS  Google Scholar 

  68. Wheeler GD, Singh M, Pierce WD, Epling WF, Cumming DC. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release. J Clin Endocrinol Metab. 1991;72:422–5.

    Article  CAS  PubMed  Google Scholar 

  69. Obminski Z, Szczypaczewska M, Tomaszewski W. Resting concentrations of cortisol and testosterone in blood of cyclists in the training and competitive periods. Medycyna Sportowa. 2001;114:23–6.

    Google Scholar 

  70. Urhausen A, Kullmer T, Kindermann W. A 7-week follow-up study of the behaviour of testosterone and cortisol during the competition period in rowers. Eur J Appl Physiol. 1987;56:528–33.

    Article  CAS  Google Scholar 

  71. Alen A, Parkarinen A, Hakkinen K, Komi P. Responses of serum androgenic-anabolic and catabolic hormones to prolonged strength training. Int J Sports Med. 1988;9:229–33.

    Article  CAS  PubMed  Google Scholar 

  72. Bonifazi M, Bela E, Carl G, Lodi L, Martelli G, Zhu B, Lupo C. Influence of training on the response of androgen plasma concentrations to exercise in swimmers. Eur J Appl Physiol. 1995;70:109–14.

    Article  CAS  Google Scholar 

  73. Fellmann N, Coudert J, Jarrige J, Bedu M, Denis C, Boucher D, Lacour JR. Effects of endurance training on the androgenic response to exercise in man. Int J Sports Med. 1985;6:215–9.

    Article  CAS  PubMed  Google Scholar 

  74. Lucia A, Chicharro JL, Perez M, Serratosa L, Bandres F, Legido JC. Reproductive function in male endurance athletes: sperm analysis and hormonal profile. J Appl Physiol. 1996;81:2627–36.

    CAS  PubMed  Google Scholar 

  75. Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pituitary-testis axis, and semen quality: a randomized controlled study. J Endocrinol. 2009;200(3):259–71.

    Article  CAS  PubMed  Google Scholar 

  76. MacConnie S, Barkan A, Lampman RM, Schork M, Beitins IZ. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med. 1986;315:411–7.

    Article  CAS  PubMed  Google Scholar 

  77. Duclos M, Corcuff JB, Rashedi M, Fougere B. Does functional alteration of the gonadotropic axis occur in endurance trained athletes during and after exercise? A preliminary study. Eur J Appl Physiol. 1996;73:427–33.

    Article  CAS  Google Scholar 

  78. McColl EM, Wheeler GD, Bhambhani Y, Cumming DC. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol (Oxf). 1989;31:617–21.

    Article  CAS  Google Scholar 

  79. Ozen SV. Reproductive hormones and cortisol responses to plyometric training in males. Biol Sport. 2012;29(3):193–7.

    Article  Google Scholar 

  80. Hackney AC, Sinning WE, Bruot BC. Hypothalamic-pituitary-testicular axis function in endurance-trained males. Int J Sports Med. 1990;11:298–303.

    Article  CAS  PubMed  Google Scholar 

  81. Winters SJ, Troen P. Altered pulsatile secretion of luteinizing hormone in hypogonadal men with hyperprolactinaemia. Clin Endocrinol 1984; 21(3):257-63.

    Google Scholar 

  82. Burge MR, Lanzi RA, Skarda ST, Eaton RP. Idiopathic hypogonadotropic hypogonadism in a male runner is reversed by clomiphene citrate. Fertil Steril. 1997;68:745.

    Article  Google Scholar 

  83. Cumming DC, Quigley ME, Yen SS. Acute suppression of circulating testosterone levels by cortisol in men. J Clin Endocrinol Metab. 1983;57:671–3.

    Article  CAS  PubMed  Google Scholar 

  84. Dessypris A, Kuoppasalmi H, Adlercreutz HJ. Plasma cortisol, testosterone, androstenedione and luteinizing hormone (LH) in a non-competitive marathon run. J Steroid Biochem. 1976;7:33–7.

    Article  CAS  PubMed  Google Scholar 

  85. Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining. Sports Med. 1995;20:251–76.

    Article  CAS  PubMed  Google Scholar 

  86. Urhausen A, Kindermann W. Biochemical monitoring of training. Clin. J. Sports Med. 1992;2:52–61.

    Article  Google Scholar 

  87. Wittert GA, Livesey J, Espiner E, Donald R. Adaptation of the hypothalamo-pituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc. 1996;28:1015–9.

    Article  CAS  PubMed  Google Scholar 

  88. Hackney AC, Viru A. Twenty-four-hour cortisol response to multiple daily exercise sessions of moderate and high intensity. Clin Physiol. 1999;19:178–82.

    Article  CAS  PubMed  Google Scholar 

  89. Ayers JWT, Komesu V, Romani T, Ansbacher R. Anthropomorphic, hormonal, and psychologic correlates of semen quality in endurance-trained male athletes. Fertil Steril. 1985;43:917–21.

    Article  CAS  PubMed  Google Scholar 

  90. Arce JC, DeSouza J, Pescatello LS, Luciano AA. Subclinical alterations in hormone and semen profile in athletes. Fertil Steril. 1993;59:398–404.

    Article  CAS  PubMed  Google Scholar 

  91. Skarda S, Burge MR. Prospective evaluation of risk factors for exercise-induced hypogonadism in male runners. West J Med. 1998;169:9–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Roberts AC, McClure RD, Weiner RL, Brooks GA. Overtraining affects male reproductive status. Fertil Steril. 1993;60:686–92.

    Article  CAS  PubMed  Google Scholar 

  93. Wise LA, Cramer DW, Hornstein MD, Ashby RK, Missmer SA. Physical activity and semen quality among men attending an infertility clinic. Fertil Steril. 2011;95(3):1025–30.

    Article  PubMed  Google Scholar 

  94. McGrady AV. Effects of psychological stress on male reproduction: a review. Arch Androl. 1984;13:1–7.

    Article  CAS  PubMed  Google Scholar 

  95. Baker ER, Leuker R, Stumpf PG. Relationship of exercise to semen parameters and fertility success of artificial insemination donors. Fertil Steril 1984;41:107S (abstract).

    Google Scholar 

  96. Baker ER, Stevens C, Leuker R. Relationship of exercise to semen parameters and fertility success of artificial insemination donors. JSC Med Assoc. 1988;84:580–2.

    CAS  Google Scholar 

  97. Editorial—special survey: running and sex. The Runner 1982;May:26–35.

    Google Scholar 

  98. MacDougall JD, Webber CE, Martin J, Ormerod S, Chesley A, Younglai EV, Gordon CL, Blimkie CJ. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol. 1992;73:1165–70.

    CAS  PubMed  Google Scholar 

  99. MacKelvie KJ, Taunton JE, McKay HA, Khan KM. Bone mineral density and serum testosterone in chronically trained, high mileage 40–55 year old male runners. Br J Sports Med. 2000;34(4):273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Behre H, Kliesch S, Leifke E, Link T, Nieschlag NJ. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 1997;82:2386-390.

    Google Scholar 

  101. Ackerman KE, Skrinar GS, Medvedova E, Misra M, Miller KK. Estradiol levels predict bone mineral density in male collegiate athletes: a pilot study. Clin Endocrinol (Oxf). 2012;76(3):339–45.

    Article  CAS  Google Scholar 

  102. Riggs BL, Eastell R. Exercise, hypogonadism, and osteopenia. JAMA. 1986;256:392–3.

    Article  CAS  PubMed  Google Scholar 

  103. Rigotti NA, Roberts N, Jameson L. Osteopenia and bone fractures in a man with anorexia nervosa and hypogonadism. JAMA. 1986;256:385–8.

    Article  CAS  PubMed  Google Scholar 

  104. Blair SN, Kampert JB, Kohl HW 3rd, Barlow CE, Macera CA, Paffenbarger RS Jr, Gibbons LW. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA. 1996;276:205–10.

    Article  CAS  PubMed  Google Scholar 

  105. von Eckardstein A, Kliesch S, Nieschlag E, Chirazi A, Assmann G, Behre H. Suppression of endogenous testosterone in young men increases serum levels of high density lipoprotein subclass lipoprotein A-I and lipoprotein(a). J Clin Endocrinol Metab. 1997;82:3367–72.

    Google Scholar 

  106. Wood PD, Haskell WL, Stern MP, Lewis S, Perry C. Plasma lipoprotein distributions in male and female runners. Ann N Y Acad Sci. 1977;301:748–63.

    Article  CAS  PubMed  Google Scholar 

  107. Taylor AJ, Watkins T, Bell D, Carrow J, Bindeman J, Scherr D, Feuerstein I, Wong H, Bhattarai S, Vaitkus M, O’Malley PG. Physical activity and the presence and extent of calcified coronary atherosclerosis. Med Sci Sports Exerc. 2002;34:228–33.

    Article  PubMed  Google Scholar 

  108. Lehmann M, Lormes W, Opitz-Gress A, Steinacker J, Netzer N, Foster C, Gastmann U. Training and overtraining: an overview and experimental results in endurance sports. J Sports Med Phys Fitness. 1997;37:7–17.

    CAS  PubMed  Google Scholar 

  109. Fry AC, Kraemer W. Resistance exercise overtraining and overreaching: neuroendocrine responses. Sports Med. 1997;23:106–29.

    Article  CAS  PubMed  Google Scholar 

  110. Fry RW, Morton AR, Garcia-Webb P, Keast D. Monitoring exercise stress by changes in metabolic and hormonal responses over a 24-h period. Eur J Appl Physiol. 1991;63:228–34.

    Article  CAS  Google Scholar 

  111. Fry RW, Morton AR, Garcia-Webb P, Crawford GPM, Keast D. Biological responses to overload training in endurance sports. Eur J Appl Physiol. 1992;64:335–44.

    Article  CAS  Google Scholar 

  112. Hackney AC. Neuroendocrine system, exercise overload and regeneration. In: Lehmann M, et al., editors. Overload, performance incompetence, and regeneration in sport. Stuttgart: Kluwer Academic-Plenum; 1999. p. 173–87.

    Chapter  Google Scholar 

  113. Barron JL, Noakes TD, Levy W, Smith C, Millar RP. Hypothalamic dysfunction in overtrained athletes. J Clin Endocrinol Metab. 1985;60:803–6.

    Article  CAS  PubMed  Google Scholar 

  114. Lane AR, Duke JW, Hackney AC. Influence of dietary carbohydrate intake on the free testosterone: cortisol ratio responses to short-term intensive exercise training. Eur J Appl Physiol. 2010;108(6):1125–31.

    Article  CAS  PubMed  Google Scholar 

  115. American College of Sports Medicine. Position statement on the use of anabolic steroids. Indianapolis: ACSM Publishing; 1990.

    Google Scholar 

  116. Rogol AD, Yesalis CE. Clinical Review—anabolic-androgenic steroids and athletes: what are the issues? J Clin Endocrinol Metab. 1992;74:465–9.

    Article  CAS  PubMed  Google Scholar 

  117. Wichstrøm L. Predictors of future anabolic androgenic steroid use. Med Sci Sports Exerc. 2006;38(9):1578–83.

    Article  PubMed  CAS  Google Scholar 

  118. Sagoe D, Molde H, Andreassen CS, Torsheim T, Pallesen S. The global epidemiology of anabolic-androgenic steroid use: a meta-analysis and meta-regression analysis. Ann Epidemiol. 2014;24(5):383–98.

    Article  PubMed  Google Scholar 

  119. Rogol A. Sex steroid and growth hormone supplementation to enhance performance in adolescent athletes. Curr Opin Pediatr. 2000;12:382–7.

    Article  CAS  PubMed  Google Scholar 

  120. Brooks GA, TD Fahey, TP White. Ergogenic aids. Exercise physiology: human bioenergetics and its application, 2nd ed. Mountain View: Mayfield Publishing 1996:617–30.

    Google Scholar 

  121. Bhasin S, Storer TW, Berman N, Yarasheski KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R. Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab. 1997;82:407–13.

    CAS  PubMed  Google Scholar 

  122. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen X, Yarasheski KE, Magliano L, Dzekov C, Dzekov J, Bross R, Phillips J, Sinha-Hikim L, Shen R, Storer TW. Testosterone dose-response relationship in healthy young men. Am J Physiol Endocrinol Metab. 2001;281:E1172–81.

    CAS  PubMed  Google Scholar 

  123. Shahani S, Braga-Basaria M, Maggio M, Basaria S. Androgens and erythropoiesis: past and present. J Endocrinol Invest. 2009;32(8):704–16.

    Article  CAS  PubMed  Google Scholar 

  124. Vahlquist B. The cause of the sexual differences in erythrocyte hemoglobin and serum iron levels in human adults. Blood. 1950;5(9):874–5.

    CAS  PubMed  Google Scholar 

  125. Shahidi NT. Androgens and erythropoiesis. N Engl J Med. 1973;289(2):72–80.

    Article  CAS  PubMed  Google Scholar 

  126. Jockenhovel F, Vogel E, Reinhardt W, Reinwein D. Effects of various modes of androgen substitution therapy on erythropoiesis. Eur J Med Res. 1997;2(7):293–8.

    CAS  PubMed  Google Scholar 

  127. Snyder PJ, Peachey H, Berlin JA, Hannoush P, Haddad G, Dlewati A, Santanna J, Loh L, Lenrow DA, Holmes JH, Kapoor SC, Atkinson LE, Strom BL. Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab. 2000;85(8):2670–7.

    CAS  PubMed  Google Scholar 

  128. Arnold AM, Peralta JM, Thonney ML. Ontogeny of growth hormone, insulin-like growth factor-I, estradiol and cortisol in the growing lamb: effect of testosterone. J Endocrinol. 1996;150:391–9.

    Article  CAS  PubMed  Google Scholar 

  129. Urban RJ, Bodenburg YH, Gilkison C, Foxworth J, Coggan AR, Wolfe RR, Ferrando A. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol. 1995;269:E820–6.

    CAS  PubMed  Google Scholar 

  130. Mauras N, Hayes V, Welch S, Rini A, Helgeson K, Dokler M, Veldhuis JD, Urban RJ. Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and adiposity. J Clin Endocrinol Metab. 1998;83:1886–92.

    CAS  PubMed  Google Scholar 

  131. Wilson JD. The role of 5 alpha-reduction in steroid hormone physiology. Reprod Fertil. 2001;13:673–8.

    Article  CAS  Google Scholar 

  132. Inoue K, Yamasaki S, Fushiki T, Okada Y, Sugimoto E. Androgen receptor antagonist suppresses exercise-induced hypertrophy of skeletal muscle. Eur J Appl Physiol. 1994;69:88–91.

    Article  CAS  Google Scholar 

  133. Sheffield-Moore M, Urban RJ, Wolf SE, Jiang J, Catlin DH, Herndon DN, Wolfe RR, Ferrando AA. Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab. 1999;84:2705–11.

    CAS  PubMed  Google Scholar 

  134. Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev. 2002;23:175–200.

    Article  CAS  PubMed  Google Scholar 

  135. Ting HJ, Yeh S, Nishimura K, Chang C. Supervillin associates with androgen receptor and modulates its transcriptional activity. Proc Natl Acad Sci. 2002;99:661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Danhaive PA, Rousseau CG. Evidence for sex-dependent anabolic response to androgenic steroids medicated by muscle glucocorticoid receptors in the rat. J Steroid Biochem. 1988;29:575–81.

    Article  CAS  PubMed  Google Scholar 

  137. Ferrando AA, Stuart CA, Sheffield-Moore M, Wolfe RR. Inactivity amplifies the catabolic response of skeletal muscle to cortisol. J Clin Endocrinol Metab. 1999;84:3515–21.

    CAS  PubMed  Google Scholar 

  138. Medlinsky J, Napier C, Gurney C. The use of an antiandrogen to further investigate the erythropoietic effects of androgens. J Lab Clin Med. 1969;74(1):85–92.

    CAS  PubMed  Google Scholar 

  139. Bachman E, Travison TG, Basaria S, Davda MN, Guo W, Li M, Connor Westfall J, Bae H, Gordeuk V, Bhasin S. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci 2014; 69(6):725–35.

    Google Scholar 

  140. Moriyama Y, Fisher JW. Effects of testosterone and erythropoietin on erythroid colony formation in human bone marrow cultures. Blood. 1975;45(5):665–70.

    CAS  PubMed  Google Scholar 

  141. Parker JP, Beirne GJ, Desai JN, Raich PC, Shahidi NT. Androgen-induced increase in red-cell 2,3-diphosphoglycerate. N Engl J Med. 1972;287(8):381–3.

    Article  CAS  PubMed  Google Scholar 

  142. Ferrando AA, Sheffield-Moore M, Wolf SE, Herndon DN, Wolfe RR. Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med. 2001;29:1936–42.

    Article  CAS  PubMed  Google Scholar 

  143. Mottram DR, George AJ. Anabolic steroids. Baillieres Best Pract Res Clin Endocrinol Metab. 2000;14:55–69.

    Article  CAS  PubMed  Google Scholar 

  144. Nieschlag E, Vorona E. Doping with anabolic androgenic steroids (AAS): Adverse effects on non-reproductive organs and functions. Rev Endocr Metab Disord. 2015;16(3):199–211.

    Article  CAS  PubMed  Google Scholar 

  145. Kuipers H. Anabolic steroids: side effects. In: Fahey TD, editors. Encyclopedia of sports medicine and science. Internet Society for Sport Science: http://sportsci.org, 1998.

  146. Alen M, Rahkila P. Anabolic-androgenic steroids effects on endocrinology and lipid metabolism in athletes. Sports Med. 1988;6:327–32.

    Article  CAS  PubMed  Google Scholar 

  147. Cohen JC, Hickman R. Insulin resistance and diminished glucose tolerance in power lifters ingesting anabolic steroids. J Clin Endocrinol Metab. 1987;64:960–3.

    Article  CAS  PubMed  Google Scholar 

  148. DePiccoli B, Giada F, Benettin A, Sartori E, Piccolo E. Anabolic steroid use in body builders: an echocardiographic study of left ventricular morphology and function. Int J Sports Med 1991; 12:408–12.

    Google Scholar 

  149. Haupt HA. Anabolic steroids and growth hormone. Am J Sports Med. 1993;21:468–74.

    Article  CAS  PubMed  Google Scholar 

  150. Wilson JD. Androgen abuse in athletes. Endocr Rev. 1988;9:181–91.

    Article  CAS  PubMed  Google Scholar 

  151. Tirabassi G, Gioia A, Giovannini L, Boscaro M, Corona G, Carpi A, Maggi M, Balercia G. Testosterone and cardiovascular risk. Intern Emerg Med 2013; Suppl 1:S65-9.

    Google Scholar 

  152. Nieschlag E, Vorona E. Mechanisms in endocrinology: medical consequences of doping with anabolic androgenic steroids: effects on reproductive functions. Eur J Endocrinol. 2015;173(2):R47–58.

    Article  CAS  PubMed  Google Scholar 

  153. El Osta R, Almont T, Diligent C, Hubert N, Eschwège P, Hubert J. Anabolic steroids abuse and male infertility. Basic Clin Androl. 2016;26:2.

    PubMed  PubMed Central  Google Scholar 

  154. Laure P. Epidemiological approach of doping in sport. J Sports Med Phys Fitness. 1997;37:218–24.

    CAS  PubMed  Google Scholar 

  155. Buckley WE, Yasalis CE, Friedl KE, Anderson WA, Streit A, Wright JE. Estimated prevalence of anabolic steroid use among male high school seniors. JAMA. 1988;260:3441–5.

    Article  CAS  PubMed  Google Scholar 

  156. Yesalis CE III, Kennedy NJ, Kopstein AN, Bahrke MS. Anabolic-androgenic steroid use in the United States. JAMA. 1993;270:1217–21.

    Article  CAS  PubMed  Google Scholar 

  157. Bamberger M., Yaeger D. Over the edge. Sports Illustrated 1997;86:60–70.

    Google Scholar 

  158. Albertson TE, Chenoweth JA, Colby DK, Sutter ME. The changing drug culture: use and misuse of appearance-and performance-enhancing drugs. FP Essent. 2016;41:30–43.

    Google Scholar 

  159. Leder BZ, Catlin DH, Longcope C, Ahrens B, Schoenfeld DA, Finkelstein JS. Metabolism of orally administered androstenedione in young men. J Clin Endocrinol Metab. 2001;86:3654–8.

    Article  CAS  PubMed  Google Scholar 

  160. King D, Sharp RL, Vukovich MD, Brown GA, Reifenrath TA, Uhl NL, Parsons KA. Effects of oral androstenedione on serum testosterone and adaptations to resistance training in young men. JAMA1999; 281:2020–2028.

    Google Scholar 

  161. Leder BZ, Longcope, Catlin DH, Ahrens B, Schoenfeld DA, Finkelstein JS. Oral androstenedione administration and serum testosterone concentrations in young men. JAMA 2000;283:779-82.

    Google Scholar 

  162. Prough R, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol Endocrinol. 2016; JME-16–0013.

    Google Scholar 

  163. Yen SS, Morales AJ, Khorram O. Replacement of DHEA in aging men and women: potential remedial effects. Ann NY Acad Sci. 1995;774:128–42.

    Article  CAS  PubMed  Google Scholar 

  164. Deyssig R, Frisch H, Blum WF, Waldhor T. Effect of growth hormone treatment on hormonal parameters, body composition, and strength in athletes. Acta Endocrinol. 1993;128:313–8.

    CAS  PubMed  Google Scholar 

  165. Yarasheski KE, Cambell JA, Smith K, Rennie MJ, Holloszy OJ, Bier DM. Effect of growth hormone and resistance exercise on muscle growth in young men. Am J Physiol Endocrinol Metab. 1992;25:E261–7.

    Google Scholar 

  166. World Anti-doping Association (WADA). Androgen deficiency/male hypogonadism: TUE Physician Guidelines 2015. WADA Headquarters, Montreal (Quebec) H4Z 1B7, Canada.

    Google Scholar 

  167. Handelsman DJ, Heather A. Androgen abuse in sports. Asian J Androl. 2008;10(3):403–15.

    Article  CAS  PubMed  Google Scholar 

  168. Viru A, Viru M. Biochemical monitoring of sport training. Champaign: Human Kinetics Publishing; 2001. p. 5–192.

    Google Scholar 

  169. Bouchard C, Shephard RJ, Stephens T, Sutton JR, McPherson BD. Exercise, fitness, and health: a consensus of current knowledge. Champaign, IL: Human Kinetics; 1990.

    Google Scholar 

  170. Lehmann M, Knizia K, Gastmann U, Petersen G, Khalaf A, Bauer S, Kerp L, Keul J. Influence of 6-week, 6 days per week, training on pituitary function in recreational athletes. Br J Sports Med. 1993;27:186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Winder WW, Hagberg JM, Hickson RR, Ehsani AA, McLane JA. Time course of sympathoadrenal adaptation to endurance exercise training in man. J Appl Physiol. 1978;45:370–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to those colleagues who have inspired us with their work and have shown themselves to be the utmost of professionals—Dr. Stanley Hauerwas, Dr. Robert G. McMurray, and the late Dr. Wayne E. Sinning, Dr. Atko Viru, and Dr. Manfred Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Hackney PhD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hackney, A.C., Anderson, T., Dobridge, J. (2017). Exercise and Male Hypogonadism: Testosterone, the Hypothalamic-Pituitary-Testicular Axis, and Exercise Training. In: Winters, S., Huhtaniemi, I. (eds) Male Hypogonadism. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-53298-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53298-1_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-53296-7

  • Online ISBN: 978-3-319-53298-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics