Skip to main content

Neuropsychiatric Symptoms Related to Cholinergic Deficits in Parkinson’s Disease

  • Chapter
  • First Online:
Psychiatry and Neuroscience Update - Vol. II

Abstract

Given its ability to explain the most frequent motor symptoms of Parkinson’s disease (PD), degeneration of dopaminergic neurons has been considered one of the disease’s main pathophysiological features. Several studies have shown that neurodegeneration also affects noradrenergic, serotoninergic, cholinergic, and other monoaminergic neuronal populations. In this work, the characteristic contribution of cholinergic deficits to cognitive dysfunction, psychosis, and sleep disturbances in PD and their treatment are explored. Important neurophysiological processes at the root of several motor and cognitive functions remit to cholinergic neurotransmission at the synaptic pathway and circuital levels. The bulk of evidence highlights the link between cholinergic alterations and the aforementioned symptoms. The pathophysiology of these symptoms is related to degeneration of cholinergic nuclei, most importantly the nucleus basalis magnocellularis and the pedunculopontine nucleus. Rivastigmine, a drug that increases cholinergic tone by inhibiting the enzyme cholinesterase, is effective for dementia, whereas the use of donepezil is still in the realm of investigation. Evidence on the clinical effects of these drugs for psychosis and rapid eye movement sleep disturbances is still weak. Anticholinergic drugs should be used with caution in PD, as they may aggravate these cholinergic symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pringsheim T, Jette N, Frolkis A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583–90.

    Article  PubMed  Google Scholar 

  2. Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8:464–74.

    Article  CAS  PubMed  Google Scholar 

  3. Hornykiewicz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev. 1966;18:925–64.

    CAS  PubMed  Google Scholar 

  4. Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Disord. 2008;23(Suppl 3):S497–508.

    Article  PubMed  Google Scholar 

  5. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.

    Article  CAS  PubMed  Google Scholar 

  6. Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper AA, Gitler AD, Cashikar A, et al. α-synuclein blocks ER-golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313:324–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.

    Article  CAS  PubMed  Google Scholar 

  9. Mercado G, Valdes P, Hetz C. An ERcentric view of Parkinson’s disease. Trends Mol Med. 2013;19:165–75.

    Article  CAS  PubMed  Google Scholar 

  10. Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci. 2014;15:233–49.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Reitbock P, Anichtchik O, Bellucci A, et al. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain. 2010;133:2032–44.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lim SY, Fox SH, Lang AE. Overview of the extranigral aspects of Parkinson disease. Arch Neurol. 2009;66:167–72.

    PubMed  Google Scholar 

  13. Muller ML, Bohnen NI, Kotagal V, et al. Clinical markers for identifying cholinergic deficits in Parkinson’s disease. Mov Disord. 2015;30:269–73.

    Article  PubMed  Google Scholar 

  14. Perez-Lloret S, Barrantes FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. npj Parkinson’s Disease. 2016;2:16001–12.

    Article  Google Scholar 

  15. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76:116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol. 1997;53:603–25.

    Article  CAS  PubMed  Google Scholar 

  17. Descarries L, Parent M. Chapter 14. Asynaptic and synaptic innervation by acetylcholine neurons of the central nervous system. In: Pickel V, Segal M, editors. The synapse. Boston: Academic Press; 2014. p. 447–66.

    Chapter  Google Scholar 

  18. Newman EL, Gupta K, Climer JR, et al. Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci. 2012;6:24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mesulam MM, Mufson EJ, Wainer BH, et al. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience. 1983;10:1185–201.

    Article  CAS  PubMed  Google Scholar 

  20. Wess J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci. 2003;24:414–20.

    Article  CAS  PubMed  Google Scholar 

  21. Wess J, Duttaroy A, Zhang W, et al. M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels. 2003;9:279–90.

    Article  CAS  PubMed  Google Scholar 

  22. Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci. 2002;3:102–14.

    Article  CAS  PubMed  Google Scholar 

  23. Kaiser S, Wonnacott S. alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol. 2000;58:312–8.

    CAS  PubMed  Google Scholar 

  24. Alkondon M, Pereira EFR, Barbosa CTF, et al. Neuronal nicotinic acetylcholine receptor activation modulates g-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J Pharmacol Exp Ther. 1997;283:1396–411.

    CAS  PubMed  Google Scholar 

  25. Nys M, Kesters D, Ulens C. Structural insights into Cys-loop receptor function and ligand recognition. Biochem Pharmacol. 2013;86:1042–53.

    Article  CAS  PubMed  Google Scholar 

  26. Barrantes FJ. Phylogenetic conservation of protein–lipid motifs in pentameric ligand-gated ion channels. Biochim Biophys Acta Biomembr. 2015;1848:1796–805.

    Article  CAS  Google Scholar 

  27. Raiteri M, Leardi R, Marchi M. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J Pharmacol Exp Ther. 1984;228:209–14.

    CAS  PubMed  Google Scholar 

  28. Cecchini M, Changeux J-P. The nicotinic acetylcholine receptor and its prokaryotic homologues: structure, conformational transitions & allosteric modulation. Neuropharmacol. 2015;96, Part B:137–49.

    Article  Google Scholar 

  29. Gotti C, Riganti L, Vailati S, et al. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des. 2006;12:407–28.

    Article  CAS  PubMed  Google Scholar 

  30. Gotti C, Moretti M, Bohr I, et al. Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer’s disease, Parkinson’s disease and dementia with Lewy bodies by immunoprecipitation. Neurobiol Dis. 2006;23:481–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bordia T, Mcgregor M, Mcintosh JM, et al. Evidence for a role for alpha6(*) nAChRs in l-dopa-induced dyskinesias using Parkinsonian alpha6(*) nAChR gain-of-function mice. Neuroscience. 2015;295:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo R, Janssen MJ, Partridge JG, et al. Direct and GABA-mediated indirect effects of nicotinic ACh receptor agonists on striatal neurones. J Physiol. 2013;591:203–17.

    Article  CAS  PubMed  Google Scholar 

  33. Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacol. 2015;96, Part B:302–11.

    Article  Google Scholar 

  34. Halliday GM, Leverenz JB, Schneider JS, et al. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord. 2014;29:634–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hasselmo ME, Wyble BP, Wallenstein GV. Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus. 1996;6:693–708.

    Article  CAS  PubMed  Google Scholar 

  36. Palma E, Conti L, Roseti C, et al. Novel approaches to study the involvement of alpha7-nAChR in human diseases. Curr Drug Targets. 2012;13:579–86.

    Article  CAS  PubMed  Google Scholar 

  37. Wallace TL, Porter RH. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol. 2011;82:891–903.

    Article  CAS  PubMed  Google Scholar 

  38. Quik M, Zhang D, Mcgregor M, et al. Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem Pharmacol. 2015;97(4):399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flynn DD, Mash DC. Characterization of L-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J Neurochem. 1986;47:1948–54.

    Article  CAS  PubMed  Google Scholar 

  40. Burghaus L, Schutz U, Krempel U, et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res. 2000;76:385–8.

    Article  CAS  PubMed  Google Scholar 

  41. Freedman R, Olincy A, Buchanan RW, et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry. 2008;165:1040–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Barrantes FJ. Molecular pathology of the nicotinic acetylcholine receptor. In: Barrantes FJ, editor. The nicotinic acetylcholine receptor: current views and future trends. Austin: Landes Bioscience; 1998. p. 175–213.

    Chapter  Google Scholar 

  43. Aubert I, Araujo DM, Cécyre D, et al. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem. 1992;58:529–41.

    Article  CAS  PubMed  Google Scholar 

  44. Banerjee C, Nyengaard JR, Wevers A, et al. Cellular expression of alpha7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer’s and Parkinson’s disease — a stereological approach. Neurobiol Dis. 2000;7:666–72.

    Article  CAS  PubMed  Google Scholar 

  45. Valles AS, Borroni MV, Barrantes FJ. Targeting brain alpha7 nicotinic acetylcholine receptors in Alzheimer’s disease: rationale and current status. CNS Drugs. 2014;28:975–87.

    Article  CAS  PubMed  Google Scholar 

  46. Nikiforuk A, Kos T, Potasiewicz A, et al. Positive allosteric modulation of alpha 7 nicotinic acetylcholine receptors enhances recognition memory and cognitive flexibility in rats. Eur Neuropsychopharmacol. 2015;25:1300–13.

    Article  CAS  PubMed  Google Scholar 

  47. Sadigh-Eteghad S, Talebi M, Mahmoudi J, et al. Selective activation of alpha7 nicotinic acetylcholine receptor by PHA-543613 improves Abeta25-35-mediated cognitive deficits in mice. Neuroscience. 2015;298:81–93.

    Article  CAS  PubMed  Google Scholar 

  48. Beatty WW, Butters N, Janowsky DS. Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav Neural Biol. 1986;45:196–211.

    Article  CAS  PubMed  Google Scholar 

  49. Ostfeld AM, Aruguete A. Central nervous system effects of hyoscine in man. J Pharmacol Exp Ther. 1962;137:133–9.

    CAS  PubMed  Google Scholar 

  50. Lin CH, Lung HL, Li ST, et al. Delirium after transdermal scopolamine patch in two children. J Neuropsychiatr Clin Neurosci. 2014;26:E01–2.

    Article  Google Scholar 

  51. Gerretsen P, Pollock BG. Drugs with anticholinergic properties: a current perspective on use and safety. Expert Opin Drug Saf. 2011;10:751–65.

    Article  PubMed  Google Scholar 

  52. Pappas BA, Bayley PJ, Bui BK, et al. Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. Neurobiol Aging. 2000;21:11–7.

    Article  CAS  PubMed  Google Scholar 

  53. Minger SL, Esiri MM, Mcdonald B, et al. Cholinergic deficits contribute to behavioral disturbance in patients with dementia. Neurology. 2000;55:1460–7.

    Article  CAS  PubMed  Google Scholar 

  54. Francis PT, Palmer AM, Snape M, et al. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66:137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Babic T. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;67:558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18.

    Article  CAS  PubMed  Google Scholar 

  57. Kar S, Slowikowski SP, Westaway D, et al. Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci. 2004;29:427–41.

    PubMed  PubMed Central  Google Scholar 

  58. Park HE, Park IS, Oh YS, et al. Subcortical whiter matter hyperintensities within the cholinergic pathways of patients with dementia and parkinsonism. J Neurol Sci. 2015;353:44–8.

    Article  CAS  PubMed  Google Scholar 

  59. Gaspar P, Gray F. Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol. 1984;64:43–52.

    Article  CAS  PubMed  Google Scholar 

  60. Lee JE, Cho KH, Song SK, et al. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2014;85:7–16.

    Article  PubMed  Google Scholar 

  61. Hall H, Reyes S, Landeck N, et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain. 2014;137:2493–508.

    Article  PubMed  Google Scholar 

  62. Lorenz R, Samnick S, Dillmann U, et al. Nicotinic alpha4beta2 acetylcholine receptors and cognitive function in Parkinson’s disease. Acta Neurol Scand. 2014;130:164–71.

    Article  CAS  PubMed  Google Scholar 

  63. Liu AK, Chang RC, Pearce RK, et al. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 2015;129:527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lieberman A. Are dementia and depression in Parkinson’s disease related? J Neurol Sci. 2006;248:138–42.

    Article  PubMed  Google Scholar 

  65. Bohnen NI, Kaufer DI, Hendrickson R, et al. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson’s disease and parkinsonian dementia. J Neurol Neurosurg Psychiatry. 2007;78:641–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shoji Y, Nishio Y, Baba T, et al. Neural substrates of cognitive subtypes in Parkinson’s disease: a 3-year longitudinal study. PLoS One. 2014;9:e110547.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yarnall A, Rochester L, Burn DJ. The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov Disord. 2011;26:2496–503.

    Article  PubMed  Google Scholar 

  68. Takahashi S, Tohgi H, Yonezawa H, et al. The effect of trihexyphenidyl, an anticholinergic agent, on regional cerebral blood flow and oxygen metabolism in patients with Parkinson’s disease. J Neurol Sci. 1999;167:56–61.

    Article  CAS  PubMed  Google Scholar 

  69. Lenzi GL, Jones T, Reid JL, et al. Regional impairment of cerebral oxidative metabolism in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1979;42:59–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manganelli F, Vitale C, Santangelo G, et al. Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson’s disease. Brain. 2009;132:2350–5.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vardy ER, Teodorczuk A, Yarnall AJ. Review of delirium in patients with Parkinson’s disease. J Neurol. 2015;262(11):2401–10.

    Article  CAS  PubMed  Google Scholar 

  72. Crispo JA, Willis AW, Thibault DP, et al. Associations between anticholinergic burden and adverse health outcomes in Parkinson disease. PLoS ONE. 2016;11:e0150621.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Van Dort CJ, Zachs DP, Kenny JD, et al. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci U S A. 2015;112:584–9.

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki K, Miyamoto M, Miyamoto T, et al. Parkinson’s disease and sleep/wake disturbances. Curr Neurol Neurosci Rep. 2015;15:8.

    Article  PubMed  Google Scholar 

  75. Postuma RB, Lang AE, Massicotte-Marquez J, et al. Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder. Neurology. 2006;66:845–51.

    Article  CAS  PubMed  Google Scholar 

  76. Laloux C, Derambure P, Jacquesson JM, et al. The effects of serotoninergic, noradrenergic, cholinergic and dopaminergic drugs on vigilance states in MPTP-treated mice. Brain Res. 2007;1161:79–87.

    Article  CAS  PubMed  Google Scholar 

  77. Nardone R, Bergmann J, Brigo F, et al. Functional evaluation of central cholinergic circuits in patients with Parkinson’s disease and REM sleep behavior disorder: a TMS study. J Neural Transm. 2013;120:413–22.

    Article  CAS  PubMed  Google Scholar 

  78. Pagano G, Rengo G, Pasqualetti G, et al. Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;86(7):767–73.

    Article  PubMed  Google Scholar 

  79. Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med. 2004;351:2509–18.

    Article  CAS  PubMed  Google Scholar 

  80. Dubois B, Tolosa E, Katzenschlager R, et al. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord. 2012;27:1230–8.

    Article  CAS  PubMed  Google Scholar 

  81. Ravina B, Putt M, Siderowf A, et al. Donepezil for dementia in Parkinson’s disease: a randomised, double blind, placebo controlled, crossover study. J Neurol Neurosurg Psychiatry. 2005;76:934–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mamikonyan E, Xie SX, Melvin E, et al. Rivastigmine for mild cognitive impairment in Parkinson disease: a placebo-controlled study. Mov Disord. 2015;30:912–8.

    Article  CAS  PubMed  Google Scholar 

  83. Emre M, Poewe W, De Deyn PP, et al. Long-term safety of rivastigmine in Parkinson disease dementia: an open-label, randomized study. Clin Neuropharmacol. 2014;37:9–16.

    CAS  PubMed  Google Scholar 

  84. Seppi K, Weintraub D, Coelho M, et al. The movement disorder society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S42–80.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Possin KL, Kang GA, Guo C, et al. Rivastigmine is associated with restoration of left frontal brain activity in Parkinson’s disease. Mov Disord. 2013;28:1384–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hindle JV. The practical management of cognitive impairment and psychosis in the older Parkinson’s disease patient. J Neural Transm (Vienna). 2013;120:649–53.

    Article  Google Scholar 

  87. Bergman J, Lerner V. Successful use of donepezil for the treatment of psychotic symptoms in patients with Parkinson’s disease. Clin Neuropharmacol. 2002;25:107–10.

    Article  CAS  PubMed  Google Scholar 

  88. Schrag A, Sauerbier A, Chaudhuri KR. New clinical trials for nonmotor manifestations of Parkinson’s disease. Mov Disord. 2015;30:1490–504.

    Article  CAS  PubMed  Google Scholar 

  89. Tampi RR, Tampi DJ, Ghori AK. Acetylcholinesterase Inhibitors for delirium in older adults. Am J Alzheimers Dis Other Demen. 2016;31:305–10.

    Article  PubMed  Google Scholar 

  90. Aurora RN, Zak RS, Maganti RK, et al. Best practice guide for the treatment of REM sleep behavior disorder (RBD). J Clin Sleep Med. 2010;6:85–95.

    PubMed  PubMed Central  Google Scholar 

  91. Howell MJ, Schenck CH. Rapid eye movement sleep behavior disorder and neurodegenerative disease. JAMA Neurol. 2015;72:707–12.

    Article  PubMed  Google Scholar 

  92. Arnulf I, Ferraye M, Fraix V, et al. Sleep induced by stimulation in the human pedunculopontine nucleus area. Ann Neurol. 2010;67:546–9.

    Article  PubMed  Google Scholar 

  93. Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res. 2011;221:564–73.

    Article  CAS  PubMed  Google Scholar 

  94. Chung KA, Lobb BM, Nutt JG, et al. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology. 2010;75:1263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Henderson EJ, Lord SR, Brodie MA, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15:249–58.

    Article  CAS  PubMed  Google Scholar 

  96. Bohnen NI, Frey KA, Studenski S, et al. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology. 2013;81:1611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bohnen NI, Muller ML, Koeppe RA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 2009;73:1670–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zahodne LB, Fernandez HH. Pathophysiology and treatment of psychosis in Parkinson’s disease: a review. Drugs Aging. 2008;25:665–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interests

The authors declare no conflict of interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Perez-Lloret MD, PhD, CPI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Perez-Lloret, S., Peralta, M.C., Barrantes, F.J. (2017). Neuropsychiatric Symptoms Related to Cholinergic Deficits in Parkinson’s Disease. In: Gargiulo, P., Mesones-Arroyo, H. (eds) Psychiatry and Neuroscience Update - Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-319-53126-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53126-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53125-0

  • Online ISBN: 978-3-319-53126-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics