Skip to main content

Targeting of Heat Shock Proteins by Natural Products in Cancer

  • Chapter
  • First Online:
Molecular Oncology: Underlying Mechanisms and Translational Advancements

Abstract

Initially discovered as a group of proteins showing significantly higher expression in response to heat stress, Heat shock proteins (HSPs) have gained considerable appreciation. Overwhelmingly increasing scientific evidence has highlighted the role of these proteins as molecular chaperones which trigger protein holding and folding thus facilitating freshly synthesized protein/s to achieve mature and biologically active conformation. It is becoming progressively more understandable that HSPs are involved in post-translational modification of proteins of signaling cascades, modulation of apoptosis related proteins, assembly and disassembly of transcriptional machinery. Recently emerging functional and structural data has provided new insights related to biochemical regulation of HSPs and the structural dynamics used by these proteins to act on a diverse client repertoire.

Different strategies are currently being tested to effectively inhibit/downregulate HSPs in cancer cells. Wide ranging natural products, particularly, antioxidant compounds, prevent HSP expression and induce apoptosis in tumor cells. Besides, these compounds help to reduce off-target effects of radio- or chemotherapies in many types of cancers.

Plethora of information has considerably improved our understanding of the molecular and cellular basis of HSP induced regulation of myriad of proteins and these insights may lead to the development of efficient therapeutic agents. The current chapter focuses on suppression of HSPs by using natural compounds in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-allylamino-17-demethoxygeldanamycin

7-KC:

7-Ketocholestrol

ALS:

Amyotrophic lateral sclerosis

CDDP:

Cisplatin

CML:

Chronic myelogenous leukemia

DMC:

Demethoxycurcumin

Dox:

Doxorubicin

EGCG:

Epigallocatechin-3-gallate

HSF:

Heat shock factor

HSP:

Heat shock protein

HSR:

Heat shock response

PEITC:

Phenethyl isothiocyanate

siRNA:

Small interfering RNA

TF:

Theaflavin

TR:

Thearubigin

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers CD, Parkin D (2010) GLOBOCAN 2008, Cancer incidence and mortality worldwide: IARC CancerBase No. 10 [Internet]. International Agency for Research on Cancer, Lyon, France. http://globocan.iarc.fr

  2. Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    Article  CAS  PubMed  Google Scholar 

  3. Snoeckx LHEH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81(4):1461–1497

    CAS  PubMed  Google Scholar 

  4. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York. ISBN: 0-8153-4072-9

    Google Scholar 

  5. Papp E, Nardai G, Söti C, Csermely P (2003) Molecular chaperons, stress proteins and redox homeostasis. Biofactors 17:249–257

    Article  CAS  PubMed  Google Scholar 

  6. Lanneau D, Thonel A, Maurel S, Didelot C, Garrido C (2007) Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1(1):53–60

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sarto C, Binz PA, Mocarelli P (2000) Heat shock proteins in human cancer. Electrophoresis 21(6):1218–1226

    Article  CAS  PubMed  Google Scholar 

  8. Andrieu C, Taieb D, Baylot V, Ettinger S, Soubeyran P, De-Thonel A, Nelson C, Garrido C, So A, Fazli L, Bladou F, Gleave M, Iovanna JL, Rocchi P (2010) Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene 29:1883–1896

    Article  CAS  PubMed  Google Scholar 

  9. Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SA (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53(19):4443–4448

    CAS  PubMed  Google Scholar 

  10. Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y (2001) Heat shock protein 27 was up-regulated in cisplatin resistant human ovarian tumor cell line and associated with the cisplatin resistance. Cancer Lett 168(2):173–181

    Article  CAS  PubMed  Google Scholar 

  11. Capello F, Bellafiore M, Palma A, David S, Marciano V, Bartolotta T, Sciume C, Modica G, Farina F, Zummo G, Bucchieri F (2003) 60Kda chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47(2):105–110

    Article  Google Scholar 

  12. Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, Garrido C (2007) Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14:2839–2847

    Article  CAS  PubMed  Google Scholar 

  13. Kai M, Nakatsura T, Egami H, Senju S, Nishimura Y, Ogawa M (2003) Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep 10(6):1777–1782

    CAS  PubMed  Google Scholar 

  14. Ryu JW, Kim HJ, Lee YS, Myong NH, Hwang CH, Lee GS, Yom HC (2003) The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci 18(4):505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Toda T, Sakaida I, Okita K, Oka M, Nakamura N (2003) Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma. Proteomics 3(12):2487–2493

    Article  CAS  PubMed  Google Scholar 

  16. Asea A, Ara G, Teicher BA, Stevenson MA, Calderwood SK (2001) Effects of the flavonoid drug quercetin on the response of human prostate tumors to hyperthermia in vivo. Int J Hyperthermia 17:347–356

    Article  CAS  PubMed  Google Scholar 

  17. Diaz-Chavez J, Fonseca-Sanchez MA, Arechaga-Ocampo E, Flores-Perez A, Palacios-Rodriguez Y, Dominguez-Gomez G, Marchat LA, Fuentes-Mera L, Mendoza-Hernandez G, Gariglio P, Lopez-Camarillo C (2013) Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy. PLoS One 8(5):e64378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A (1999) Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445:98–102

    Article  CAS  PubMed  Google Scholar 

  19. Jones EL, Zhao MJ, Stevenson MA, Calderwood SK (2004) The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer. Int J Hyperthermia 20(8):835–849

    Article  CAS  PubMed  Google Scholar 

  20. Kagaya A, Okada A, Jitsuiki H, Tawara Y, Inagaki M, Takebayashi M, Saeki T, Nishida A, Nakata Y, Yamawaki S (2000) Effect of heat stress on serotonin-2A receptor-mediated intracellular calcium mobilization in rat C6 glioma cells. J Neural Transm 107:919–929

    Article  CAS  PubMed  Google Scholar 

  21. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJC, Kamalidehghan B, Nadzri NM, Anasamy T, Hadi AHA, Rahman HS (2013) Induction of selective cytotoxicity and apoptosis in human T4-lymphoblastoid cell line (CEMss) by boesenbergin a isolated from Boesenbergia rotunda rhizomes involves mitochondrial pathway, activation of caspase 3 and G2/M phase cell cycle arrest. BMC Complement Altern Med 13:41

    Article  PubMed  PubMed Central  Google Scholar 

  22. Önay-Uçar E, Arda N, Aitken A (2012) An extract from mistletoe, Viscum album L. reduces Hsp27 and 14-3-3 proteins expression and induces apoptosis in C6 rat glioma cells. Genet Mol Res 11(3):2801–2813

    Article  Google Scholar 

  23. Önay-Uçar E (2015) Heat shock protein-based therapies. In: Asea AAA (ed) Heat shock proteins, Chapter 3: Heat shock proteins and cancer: plant based therapy, vol 9. Springer, Switzerland, pp 27–48

    Google Scholar 

  24. Ischia J, So AI (2013) The role of heat shock proteins in bladder cancer. Nat Rev Urol 10:386–395

    Article  CAS  PubMed  Google Scholar 

  25. So A, Hadaschik B, Sowery R, Gleave M (2007) The role of stress proteins in prostate cancer. Curr Genomics 8: 252–261.

    Google Scholar 

  26. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5(22):2592–2601

    Article  CAS  PubMed  Google Scholar 

  27. Nakajima M, Kuwano H, Miyazaki T, Masuda N, Kato H (2002) Significant correlation between expression of heat shock proteins 27, 70 and lymphocyte infiltration in esophageal squamous cell carcinoma. Cancer Lett 178(1):99–106

    Article  CAS  PubMed  Google Scholar 

  28. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee SJ, Choi SA, Lee KH, Chung HY, Kim TH, Cho CK, Lee YS (2001) Role of inducible heat shock protein in radiation- induced cell death. Cell Stress Chaperones 6(3):273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nylandsted J, Brand K, Jaatela M (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci 926:122–125

    Article  CAS  PubMed  Google Scholar 

  31. Nakatsura T, Senju S, Yamada K, Jotsuka T, Ogawa M, Nishimura Y (2001) Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochem Biophys Res Commun 281:936–944

    Article  CAS  PubMed  Google Scholar 

  32. Lim SO, Park SG, Yoo JH, Park YM, Kim HJ, Jang KT, Cho JW, Yoo BC, Jung GH, Park CK (2005) Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11(14):2072–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937

    Article  CAS  PubMed  Google Scholar 

  34. Zackova M, Mouckova D, Lopotova T, Ondrackova Z, Klamova H, Moravcova J (2013) Hsp90—a potential prognostic marker in CML. Blood Cells Mol Dis 50:184–189

    Article  CAS  PubMed  Google Scholar 

  35. Abe M, Manola J, Oh WK, Parslow DL, George DJ, Austin CL, Kantoff PW (2004) Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer 3(1):49–53

    Article  CAS  PubMed  Google Scholar 

  36. Capello F, Rappa F, David S, Anzalone R, Zummo G (2003) Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res 23(2B):1325–1331

    Google Scholar 

  37. Rubporn A, Srisomsap C, Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Svasti J, Sangvanich P (2009) Comparative proteomic analysis of lung cancer cell line and lung fibroblast cell line. Cancer Genomics Proteomics 6:229–238

    CAS  PubMed  Google Scholar 

  38. Liang S, Shen G, Liu Q, Xu Y, Zhou L, Xiao S, Xu Z, Gong F, You C, Wei Y (2009) Isoform-specific expression and characterization of 14-3-3 proteins in human glioma tissues discovered by stable isotope labeling with amino acids in cell culture-based proteomic analysis. Proteomics Clin Appl 3:743–753

    Article  CAS  PubMed  Google Scholar 

  39. Song HY, Liu YK, Feng JT, Cui JF, Dai Z, Zhang LJ, Feng JX, Shen HL, Tang ZY (2006) Proteomic analysis on metastasis-associated proteins of human hepatocellular carcinoma tissues. J Cancer Res Clin Oncol 132:92–98

    Article  CAS  PubMed  Google Scholar 

  40. Cao WD, Zhang X, Zhang JN, Yang ZJ, Zhen HN, Cheng G, Li B, Gao DK (2006) Immunocytochemical detection of 14-3-3 in primary nervous system tumors. J Neurooncol 77:125–130

    Article  CAS  PubMed  Google Scholar 

  41. Cao L, Cao WD, Zhang W, Lin H, Yang X, Zhen H, Cheng J, Dong W, Huo J, Zhang X (2008) Identification of 14-3-3 protein isoforms in human astrocytoma by immunohistochemistry. Neurosci Lett 432:94–99

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Kahne T, Rocken C, Gotze T, Yu J, Sung JJ, Chen M, Hu P, Malfertheiner P, Ebert MP (2004) Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins. J Proteome Res 3:1009–1016

    Article  CAS  PubMed  Google Scholar 

  43. Pei HP, Ge H, Jiang R, Zhu H (2010) Expression and clinical significance of 14-3-3 sigma and heat shock protein 27 in colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi 13(3):213–215

    PubMed  Google Scholar 

  44. Zhang Y, Tang L, Gonzalez V (2003) Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol Cancer Ther 2:1045–1052

    CAS  PubMed  Google Scholar 

  45. Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85(19):1558–1570

    Article  CAS  PubMed  Google Scholar 

  46. Bruey JM, Paul C, Fromentin A, Hilpert S, Arrıgo AP, Solary E, Garrido C (2000) Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19(42):4855–4863

    Article  CAS  PubMed  Google Scholar 

  47. Garrido C, Mehlen P, Fromentin A, Hammann A, Assem M, Arrigo AP, Chauffert B (1996) Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur J Biochem 237:653–659

    Article  CAS  PubMed  Google Scholar 

  48. Guttmann DM, Koumenis C (2011) The heat shock proteins as targets for radiosensitization and chemosensitization in cancer. Cancer Biol Ther 12(12):1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck SG, Fuqua SA (1999) Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56:187–196

    Article  CAS  PubMed  Google Scholar 

  50. Kang SH, Kang KW, Kim KH, Kwon B, Kim SK, Lee HY, Kong SY, Lee ES, Jang SG, Yoo BY (2008) Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L (2004) Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64:6595–6602

    Article  CAS  PubMed  Google Scholar 

  52. Verrills NM, Liem NL, Liaw TY, Hood BD, Lock RB, Kavallaris M (2006) Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia—an in vivo study. Proteomics 6:1681–1694

    Article  CAS  PubMed  Google Scholar 

  53. Park SH, Lee SJ, Chung HY, Kim TH, Cho CK, Yoo SY, Lee YS (2000) Inducible heat shock protein 70 involved in the radioadaptive response. Radiat Res 153(3):318–326

    Article  CAS  PubMed  Google Scholar 

  54. Calderwood S (2007) Heat shock proteins in extracellular signaling. Methods 43(3):167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Calderwood SK, Ciocca DR (2008) Heat shock proteins: stress proteins with Janus-like properties in cancer. Int J Hyperthermia 24(1):31–39

    Article  CAS  PubMed  Google Scholar 

  56. Kim LS, Kim JH (2011) Heat shock protein as molecular targets for breast cancer therapeutics. J Breast Cancer 14(3):167–174

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Asaka M, Hirohashi S (2003) Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology 37(1):198–207

    Article  CAS  PubMed  Google Scholar 

  58. Bauer K, Nitsche U, Slotta-Huspenina J, Drecoll E, von Weyhern CH, Rosenberg R, Höfler H, Langer R (2012) High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer. Cell Oncol 35:197–205

    Article  CAS  Google Scholar 

  59. Gabai VL, Budagova KR, Sherman MY (2005) Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene 24:3328–3338

    Article  CAS  PubMed  Google Scholar 

  60. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C (2000) Hsp27 negatively regulates cell death by interacting with cytochrome C. Nat Cell Biol 2:645–652

    Article  CAS  PubMed  Google Scholar 

  61. Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    Article  CAS  PubMed  Google Scholar 

  62. Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8(1):61–70

    Article  CAS  PubMed  Google Scholar 

  63. Jaatella M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248(1):30–43

    Article  Google Scholar 

  64. Jego G, Hazoumé A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332(2):275–285

    Article  CAS  PubMed  Google Scholar 

  65. McConnell JR, McAlpine SR (2013) Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 23:1923–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pyo JS, Roh SH, Kim DK, Lee JG, Lee YY, Hong SS, Kwon SW, Park JH (2009) Anticancer effect of betulin on a human lung cancer cell line: a pharmacoproteomic approach using 2D SDS PAGE coupled with nano-HPLC tandem mass spectrometry. Planta Med 75:127–131

    Article  CAS  PubMed  Google Scholar 

  67. Soler MC, Molina JL, Díaz HA, Pinto VC, Barrios YL, He K, Roller M, Weinstein-Oppenheimer CR (2011) Effect of the standardized Cimicifuga foetida extract on Hsp 27 expression in the MCF-7 cell line. Biol Res 44(3):243–249

    Article  CAS  PubMed  Google Scholar 

  68. Oh SH, Woo JK, Yazıcı YD, Myers JN, Kim WY, Jin Q, Hong SS, Park HJ, Suh YG, Kim KW, Hong WK, Lee HY (2007) Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J Natl Cancer Inst 90(12):949–961

    Article  CAS  Google Scholar 

  69. Yang YL, Ji C, Bi ZG, Lu CC, Wang R, Gu B, Cheng L (2013) Deguelin induces both apoptosis and autophagy in cultured head and neck squamous cell carcinoma cells. PLoS One 8(1):e54736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang DJ, An H, Kim K, Kim HH, Jung J, Lee JM, Kim NJ, Han YT, Yun H, Lee S, Lee G, Lee S, Lee JS, Cha JH, Park JH, Park JW, Lee SC, Kim SG, Kim JH, Lee HY, Kim KW, Suh YG (2012) Design, synthesis, and biological evaluation of novel deguelin-based heat shock protein 90 (HSP90) inhibitors targeting proliferation and angiogenesis. J Med Chem 55:10863–10884

    Article  CAS  PubMed  Google Scholar 

  71. Hung CM, Su YH, Lin HY, Lin JN, Liu LC, Ho CT, Way TD (2012) Demethoxycurcumin modulates prostate cancer cell proliferation via AMPK-induced down-regulation of HSP70 and EGFR. J Agric Food Chem 60:8427–8434

    Article  CAS  PubMed  Google Scholar 

  72. Vassallo A, Vaccaro MC, De Tommasi N, Dal Piaz F, Leone A (2013) Identification of the plant compound geraniin as a novel Hsp90 inhibitor. PLoS One 8(9):e74266. doi:10.1371/journal.pone.0074266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tran P, Kim SA, Choi HS, Yoon JH, Ahn SG (2010) Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10:276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chen NG, Lu CC, Lin YH, Shen WC, Lai CH, Ho YJ, Chun JG, Lin TH, Lin YC, Yang JS (2011) Proteomic approaches to study epigallocatechin gallate-provoked apoptosis of TSGH-8301 human urinary bladder carcinoma cells: roles of AKT and heat shock protein 27-modulated intrinsic apoptotic pathways. Oncol Rep 26:939–947

    CAS  PubMed  Google Scholar 

  75. Brandt GE, Schmidt MD, Prisinzano TE, Blagg BS (2008) Gedunin, a novel hsp90 inhibitor: semisynthesis of derivatives and preliminary structure-activity relationships. J Med Chem 51:6495–6502. doi:10.1021/jm8007486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsai JR, Liu PL, Chen YH, Chou SH, Yang MC, Cheng YJ, Hwang JJ, Yin WH, Chong IW (2014) Ginkgo biloba extract decreases non-small cell lung cancer cell migration by downregulating metastasis-associated factor heat-shock protein 27. PLoS One 9:e91331. doi:10.1371/journal.pone.0091331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zhang L, Pang E, Loo RR, Rao J, Go VL, Loo JA, Lu QY (2011) Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics 11(24):4638–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rusak G, Gutzeit HO, Ludwig-Müller J (2002) Effects of structurally related flavonoids on hsp gene expression in human promyeloid leukaemia cells. Food Technol Biotechnol 40(4):267–273

    CAS  Google Scholar 

  79. Catalano A, Simone RE, Cittadini A, Reynaud E, Caris-Veyrat C, Palozza P (2013) Comparative antioxidant effects of lycopene, apo-10′-lycopenoic acid and apo-14′-lycopenoic acid in human macrophages exposed to H2O2 and cigarette smoke extract. Food Chem Toxicol 51:71–79

    Article  CAS  PubMed  Google Scholar 

  80. Sarkars R, Mukherjee S, Roy M (2013) Targeting heat shock proteins by phenethyl isothiocyanate results in cell-cycle arrest and apoptosis of human breast cancer cells. Nutr Cancer 65(3):480–493

    Article  CAS  PubMed  Google Scholar 

  81. Staedler D, Idrizi E, Kenzaoui BH, Juillerat-Jeanneret L (2011) Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol 68:1161–1172

    Article  CAS  PubMed  Google Scholar 

  82. Li J, Tang C, Li L, Li J, Fan Y (2016) Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. J Neurooncol 129:39–45

    Article  CAS  PubMed  Google Scholar 

  83. Jakubowicz-Gil J, Langner E, Wertel I, Piersiak T, Rzeski W (2010) Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chem Biol Interact 188:190–203

    Article  CAS  PubMed  Google Scholar 

  84. Jakubowicz-Gil J, Rzymowska J, Gawron A (2002) Quercetin, apoptosis, heat shock. Biochem Pharmacol 64:1591–1595

    Article  CAS  PubMed  Google Scholar 

  85. Jakubowicz-Gil J, Paduch R, Piersiak T, Glowniak K, Gawron A, Kandefer-Szerszen M (2005) The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochem Pharmacol 69:1343–1350

    Article  CAS  PubMed  Google Scholar 

  86. Hsu HS, Lin JH, Huang WC, Hsu TW, Su K, Chiou SH, Tsai YT, Hung SC (2011) Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 117:1516–1528

    Article  CAS  PubMed  Google Scholar 

  87. Zanini C, Giribaldi G, Mandili G, Carta F, Crescenzio N, Bisaro B, Doria A, Foglia L, di Montezemolo LC, Timeus F, Turrini F (2007) Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing’s sarcoma cell lines. J Neurochem 103:1344–1354

    Article  CAS  PubMed  Google Scholar 

  88. Jakubowicz-Gil J, Rzeski W, Zdzisińska B, Piersiak T, Weiksza K, Głowniak K, Gawron A (2008) Different sensitivity of neurons and neuroblastoma cells to quercetin treatment. Acta Neurobiol Exp 68:463–476

    Google Scholar 

  89. Chen SF, Nieh S, Jao SW, Liu CL, Wu CH, Chang YC, Yang CY, Lin YS (2012) Quercetin suppresses drug-resistant spheres via the p38 MAPK–Hsp27 apoptotic pathway in oral cancer cells. PLoS One 7(11):e49275. doi:10.1371/journal.pone.0049275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hyun JJ, Lee HS, Keum B, Seo YS, Jeen YT, Chun HJ, Um SH, Kim CD (2013) Expression of heat shock protein 70 modulates the chemoresponsiveness of pancreatic cancer. Gut Liver 7(6):739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aalinkeel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68:1773–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tanaka Y, Fujiwara K, Tanaka H, Maehata K, Kohno I (2004) Paclitaxel inhibits expression of heat shock protein 27 in ovarian and uterine cancer cells. Int J Gynecol Cancer 14:616–620

    Article  CAS  PubMed  Google Scholar 

  93. Halder B, Gupta SD, Gomes A (2012) Black tea polyphenols induce human leukemic cell cycle arrest by inhibiting Akt signaling possible involvement of Hsp90, Wnt⁄b-catenin signaling and FOXO1. FEBS J 279:2876–2891

    Article  CAS  PubMed  Google Scholar 

  94. Westerheide SD, Kawahara TLA, Orton K, Morimoto RI (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281(14):9616–9622

    Article  CAS  PubMed  Google Scholar 

  95. Casado P, Zuazua-Villar P, del Valle E, Martinez-Campa C, Lazo PS, Ramos S (2007) Vincristine regulates the phosphorylation of the antiapoptotic protein HSP27 in breast cancer cells. Cancer Lett 247:273–282

    Article  CAS  PubMed  Google Scholar 

  96. Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, Li Y, Gunatilaka AAL, Whitesell L, Zhan CG, Sun D (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79(4):542–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Choi SH, Lee YJ, Seo WD, Lee HJ, Nam JW, Lee YJ, Kim J, Seo EK, Lee YS (2011) Altered cross-linking of HSP27 by zerumbone as a novel strategy for overcoming HSP27-mediated radioresistance. Int J Radiat Oncol Biol Phys 79(4):1196–1205

    Article  CAS  PubMed  Google Scholar 

  98. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  CAS  PubMed  Google Scholar 

  99. Palozza P, Parrone P, Simone R, Catalano A (2011) Role of lycopene in the control of ROS-mediated cell growth: implications in cancer prevention. Curr Med Chem 18:1846–1860

    Article  CAS  PubMed  Google Scholar 

  100. Palozza P, Parrone P, Catalano A, Simone R (2010) Tomato lycopene and inflammatory cascade: basic interactions and clinical implications. Curr Med Chem 17:2547–2563

    Article  CAS  PubMed  Google Scholar 

  101. Zhang LX, Cooney RV, Bertram JS (1991) Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis 12:2109–2114

    Article  CAS  PubMed  Google Scholar 

  102. Nahum A, Zeller L, Danilenko M, Prall OW, Watts CK, Sutherland RL, Levy J, Sharoni Y (2006) Lycopene inhibition of IGF-induced cancer cell growth depends on the level of cyclin D1. Eur J Nutr 45:275–282

    Article  CAS  PubMed  Google Scholar 

  103. Liu C, Russell RM, Wang XD (2006) Lycopene supplementation prevents smoke induced changes in p53, p53 phosphorylation, cell proliferation and apoptosis in gastric mucosa of ferrets. Cancer Res 63:3138–3144

    Google Scholar 

  104. Linnewiel K, Ernst H, Caris-Veyrat C, Ben-Dor A, Kampf A, Salman H, Danilenko M, Levy J, Sharoni Y (2009) Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic Biol Med 47:659–667

    Article  CAS  PubMed  Google Scholar 

  105. Mein JR, Wang XD (2008) Biologic activity of lycopene metabolites: implications for cancer prevention. Nutr Rev 66:667–683

    Article  PubMed  Google Scholar 

  106. Nagao A (2004) Oxidative conversion of carotenoids to retinoids and other products. J Nutr 134:237S–240S

    CAS  PubMed  Google Scholar 

  107. Palozza P, Simone R, Catalano A, Boninsegna A, Böhm V, Fröhlich K, Mele MC, Monego G, Ranelletti FO (2010) Lycopene prevents 7-ketocholesterol-induced oxidative stress, cell cycle arrest and apoptosis in human macrophages. J Nutr Biochem 21:34–46

    Article  CAS  PubMed  Google Scholar 

  108. Brown AJ, Jesup W (1999) Oxysterols and atheresclerosis. Atherosclerosis 142:1–28

    Article  CAS  PubMed  Google Scholar 

  109. Uppala PT, Dissmore T, Lau BHS, Andacht T, Rajaram S (2013) Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: a proteomic analysis. Phytother Res 27:595–601

    Article  CAS  PubMed  Google Scholar 

  110. Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11(6):733–740

    Article  CAS  PubMed  Google Scholar 

  111. Gupta C, Vikram A, Tripathi DN, Ramarao P, Jena GB (2010) Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytother Res 24(1):119–128

    Article  CAS  PubMed  Google Scholar 

  112. Madaan K, Lather V, Pandita D (2015) Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv 21:1–9

    Google Scholar 

  113. Inal M, Kahraman A (2000) The protective effect of flavonol quercetin against ultraviolet a induced oxidative stress in rats. Toxicology 154(1–3):21–29

    Article  Google Scholar 

  114. Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18(7):427–442

    Article  CAS  PubMed  Google Scholar 

  115. Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W (2013) Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicol Appl Pharmacol 273(3):580–589

    Article  CAS  PubMed  Google Scholar 

  116. Elia G, Santoro MG (1994) Regulation of heat shock protein synthesis by quercetin in human erythroleukaemia cells. Biochem J 300:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54:4952

    CAS  PubMed  Google Scholar 

  118. Cipak L, Novotny L, Cipakova I, Rauko P (2003) Differential modulation of cisplatin and doxorubicin efficacies in leukemia cells by flavonoids. Nutr Res 23:1045–1057

    Article  CAS  Google Scholar 

  119. Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, Nagata K (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12:3490–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nagai N, Nakai A, Nagata K (1995) Quercetin suppresses heat shock response by down-regulation of HSF1. Biochem Biophys Res Commun 208(3):1099–1105

    Article  CAS  PubMed  Google Scholar 

  121. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K (1990) Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 15:393–401

    Article  CAS  PubMed  Google Scholar 

  122. Hansen RK, Oesterreich S, Lemieux P, Sarge KD, Fuqua SAW (1997) Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun 239:851–856

    Article  CAS  PubMed  Google Scholar 

  123. Cucciolla V, Borriello A, Oliva A, Galletti P, Zappia V, Ragione FD (2007) Resveratrol: from basic science to the clinic. Cell Cycle 6(20):2495–2510

    Article  CAS  PubMed  Google Scholar 

  124. Gehm BD, Mcandrews JM, Chien PY, Jameson JL (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 94:14138–14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown A, Kim MK, Beavewn MA, Burgin AB, Manqaniello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu Y, Liu J, Wang J, Liu Q (2011) The controversial links among calorie restriction. SIRT1 and resveratrol. Free Radic Biol Med 51:250–256

    Article  CAS  PubMed  Google Scholar 

  127. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104(17):7217–7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Han S, Choi JR, Soon Shin K, Kang SJ (2012) Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res 5(1483):112–117

    Article  CAS  Google Scholar 

  129. Şahin K, Akdemir F, Orhan C, Tuzcu M, Hayırli A, Şahin N (2010) Effects of dietary resveratrol supplementation on egg production and antioxidant status. Poult Sci 89:1190–1198

    Article  PubMed  CAS  Google Scholar 

  130. Chakraborty PK, Mustafi SB, Ganguly S, Chatterjee M, Raha S (2008) Resveratrol induces apoptosis in K562 (chronic myelogenous leukemia) cells by targeting a key survival protein, heat shock protein 70. Cancer Sci 99(6):1109–1116

    Article  CAS  PubMed  Google Scholar 

  131. Jakubikova J, Bao Y, Sedlak J (2005) Isothiocyanates induce cell cycle arrest, apoptosis and mitochondrial potential depolarization in HL-60 and multidrug-resistant cell lines. Anticancer Res 25:3375–3386

    CAS  PubMed  Google Scholar 

  132. Wu X, Zhou QH, Xu K (2009) Are isothiocyanates potential anti-cancer drugs? Acta Pharmacol Sin 30:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54(7):1976–1981

    Google Scholar 

  134. Moon YJ, Brazeau DA, Morris ME (2011) Dietary phenethyl isothiocyanate alters gene expression in human breast cancer cells. Evid Based Complement Alternat Med. doi:10.1155/2011/462525

  135. Priyadarshini K, Keerthi AU (2012) Paclitaxel against cancer: a short review. Med Chem 2(7):139–141

    Google Scholar 

  136. Shi P, Wang MM, Jiang LY, Liu HT, Sun JZ (2008) Paclitaxel-doxorubicin sequence is more effective in breast cancer cells with heat shock protein 27 overexpression. Chin Med J (Engl) 121:1975–1979

    CAS  Google Scholar 

  137. Vydra N, Toma A, Glowala-Kosinska M, Gogler-Piglowska A, Widlak W (2013) Overexpression of heat shock transcription factor 1 enhances the resistance of melanoma cells to doxorubicin and paclitaxel. BMC Cancer 13:504–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Halder B, Pramanik S, Mukhopadyay S, Giri AK (2005) Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity by black tea polyphenols theaflavins and thearubigins in multiple test systems. Food Chem Toxicol 43:591–597

    Article  CAS  PubMed  Google Scholar 

  139. Inoue H, Akiyama S, Maeda-Yamamoto M, Nesumi A, Tanaka T, Murakami A (2011) High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions. Cell Stress Chaperones 16(6):653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ernst E, Schmidt K, Steuer-Vogt MK (2003) Mistletoe for cancer? A systematic review of randomised clinical trials. Int J Cancer 107:262–267

    Article  CAS  PubMed  Google Scholar 

  141. Grossarth-Maticek R, Ziegler R (2007) Prospective controlled cohort studies on long-term therapy of ovarian cancer patients with mistletoe (Viscum album L.) extracts iscador. Arzneimittelforschung 57(10):665–678

    CAS  PubMed  Google Scholar 

  142. Kienle GS, Kiene H (2010) Influence of Viscum album L. (European mistletoe) extracts on quality of life in cancer patients: a systematic review of controlled clinical studies. Integr Cancer Ther 9:142–157

    Article  PubMed  Google Scholar 

  143. Tröger W, Galun D, Reif M, Schumann A, Stankovic N, Milićević M (2013) Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: a randomised clinical trial on overall survival. Eur J Cancer 49(18):3788–3797

    Article  PubMed  Google Scholar 

  144. Fu WM, Zhang JF, Wang H, Xi ZC, Wang WM, Zhuang P, Zhu X, Chen SC, Chan TM, Leung KS, Lu G, Xu HX, Kung HF (2012) Heat shock protein 27 mediates the effect of 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone on mitochondrial apoptosis in hepatocellular carcinoma. J Proteomics 75:4833–4843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this chapter to the memory of Professor Alastair Aitken for his invaluable motivation and great contribution to their knowledge and experience, both in science and in life. The authors also thank to Michele Learmonth and Gökçe Ünar for helpful suggestions. This study was supported by the Research Fund of Istanbul University (Project no. T-746/13092005, 22649 and 27484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Önay Uçar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Önay Uçar, E., Pekmez, M., Arda, N. (2017). Targeting of Heat Shock Proteins by Natural Products in Cancer. In: Farooqi, A., Ismail, M. (eds) Molecular Oncology: Underlying Mechanisms and Translational Advancements. Springer, Cham. https://doi.org/10.1007/978-3-319-53082-6_8

Download citation

Publish with us

Policies and ethics