Skip to main content

Phase-Based Registration of Cardiac Tagged MR Images by Incorporating Anatomical Constraints

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10124))

  • 763 Accesses

Abstract

This paper presents a novel method that combines respective benefits of the tracking-based methods and the Gabor-based non-tracking approaches for improving the motion/strain quantification from tagged MR images. The “tag number constant” concept used in Gabor-based non-tracking methods is integrated into a recent phase-based registration framework. We evaluated our method on both synthetic and real data: (1) on a synthetic data of a normal heart, we found that the constraint improved both longitudinal and circumferential strains accuracies; (2) on 15 healthy volunteers, the proposed method achieved better tracking accuracy compared to three state-of-the-art methods; (3) on one patient dataset, we show that our method is able to distinguish the infarcted segments from the normal ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, Y., Bernard, O., Saloux, E., Manrique, A., Allain, P., Makram-Ebeid, S., De Craene, M.: 3D harmonic phase tracking with anatomical regularization. Med. Image Anal. 26(1), 70–81 (2015)

    Article  Google Scholar 

  2. Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using cine harmonic phase (HARP) magnetic resonance imaging. Magn. Reson. Med. 42(6), 1048 (1999)

    Article  Google Scholar 

  3. Qian, Z., Liu, Q., Metaxas, D.N., Axel, L.: Identifying regional cardiac abnormalities from myocardial strains using nontracking-based strain estimation and spatio-temporal tensor analysis. IEEE Trans. Med. Imaging 30(12), 2017–2029 (2011)

    Article  Google Scholar 

  4. Bruurmijn, L.C.M., Kause, H.B., Filatova, O.G., Duits, R., Fuster, A., Florack, L.M.J., Assen, H.C.: Myocardial deformation from local frequency estimation in tagging MRI. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 284–291. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38899-6_34

    Chapter  Google Scholar 

  5. Kause, H.B., Filatova, O.G., Duits, R., Bruurmijn, L.C.M., Fuster, A., Westenberg, J.J.M., Florack, L.M.J., van Assen, H.C.: Direct myocardial strain assessment from frequency estimation in tagging MRI. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2013. LNCS, vol. 8330, pp. 212–219. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54268-8_25

    Chapter  Google Scholar 

  6. Zhou, Y., De Craene, M., Bernard, O.: Phase-based registration of cardiac tagged mr images using anatomical deformation model. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 617–620. IEEE (2016)

    Google Scholar 

  7. Makram-Ebeid, S., Somphone, O.: Non-rigid image registration using a hierarchical partition of unity finite element method. In: 2007 IEEE 11th International Conference on Computer Vision ICCV 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  8. Marchesseau, S., Delingette, H., Sermesant, M., Ayache, N.: Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech. Model. Mechanobiol. 12(4), 815–831 (2013)

    Article  Google Scholar 

  9. Tobon-Gomez, C., De Craene, M., Mcleod, K., Tautz, L., Shi, W., Hennemuth, A., Prakosa, A., Wang, H., Carr-White, G., Kapetanakis, S., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Med. Image Anal. 17(6), 632–648 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Zhou .

Editor information

Editors and Affiliations

Appendix

Appendix

In Eq. 3, conducting \(1^{st}\)-order approximations on \(\mathcal {A}_k^t\) leads to:

(6)

Instead of computing \(\mathcal {A}_k^t\) maps by phase unwrapping which is highly sensitive to image artifacts, we chose to circumvent the issue by (1) computing \(\nabla \mathcal {A}_k^t\) from HARP phases by the method described in [2] and (2) further computing \(\mathcal {A}_k^{\tau }(\mathbf {q}_{j})-\mathcal {A}_k^{\tau }(\mathbf {p}_{j})\) (\(\tau =ref\) and t) by curvilinear integration of \(\nabla \mathcal {A}_k^\tau \). The path of integration is easily defined using our mesh topology. Equation 6 then becomes:

(7)

where \(\beta _k^j\) is known and \(\delta _k^j(\mathbf {v})\) contains the model parameters.

We first replace both \(\varphi ^{(i)}(\mathbf {p}_{j})\) and \(\varphi ^{(i)}(\mathbf {q}_{j})\) in \(\delta _k^j(\mathbf {v})\) by \( g^{(i)}_j=\frac{ \varphi ^{(i)}(\mathbf {p}_{j}) + \varphi ^{(i)}(\mathbf {q}_{j})}{2}\). This is justified by the fact that \(\mathbf {p}_{j}\) and \(\mathbf {q}_{j}\) are symmetric to the window center (see Fig. 2), thus \(\varphi ^{(i)}(\mathbf {p}_{j})\approx \varphi ^{(i)}(\mathbf {q}_{j})\). \(\delta _k^j(\mathbf {v})\) then becomes:

(8)

Then, applying the Partition-of-Unity property [7] of \(g_j^{(i)}\) leads directly to [7]:

$$\begin{aligned} E_c(\mathbf {v})\le \sum _{i}{\sum _{j}{g_j^{(i)}\sum _{k}{\bigg (\beta _k^j- \frac{1}{2\pi }\mathcal {L}^{(i)}_j(\mathbf {v}^{(i)})} \bigg )^2}}=\sum _{i}{E_c^{(i)}(\mathbf {v}^{(i)})} \end{aligned}$$
(9)

Where \(E_{c}^{(i)}\) is quadratic since \(\mathcal {L}^{(i)}_j\) is linear in the motion parameters of \(\mathbf {v}^{(i)}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhou, Y., De Craene, M., Sermesant, M., Bernard, O. (2017). Phase-Based Registration of Cardiac Tagged MR Images by Incorporating Anatomical Constraints. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2016. Lecture Notes in Computer Science(), vol 10124. Springer, Cham. https://doi.org/10.1007/978-3-319-52718-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52718-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52717-8

  • Online ISBN: 978-3-319-52718-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics