Skip to main content

Microstructural Evolution in Spray Forming

  • Chapter
  • First Online:
Metal Sprays and Spray Deposition

Abstract

Spray forming is a casting process in which the molten metal is directly converted to a solid bulk with unique characteristics. When processed under optimum conditions, spray formed materials typically present microstructures composed of refined polygonal (non-dendritic) grains, uniformly distributed with low levels of micro- and macro-segregation. This set of characteristics is achieved regardless of the alloy system, making spray forming an attractive process to produce alloys where processing by conventional casting techniques is complicated. This chapter is dedicated to presenting the mechanisms that take place when the atomized droplets arrive at the deposit surface, and how the spray-formed microstructures evolve during deposition. It will be seen that spray forming is a self grain-refining casting process and cannot be considered a rapid solidification technique. Section 7.6 will address the main differences between the microstructural evolution in spray forming and other spray deposition or “thermal spray” processes. These processes include plasma spraying, high velocity oxy-fuel, wire arc spraying, detonation gun spraying, etc. In this way, it will show why spray forming is such a unique process. This chapter is also dedicated to presenting how the porosity—an intrinsic feature of spray-formed microstructures—is generated and how the processing parameters affect its type, size and distribution. Furthermore, the generation of other defects related to the solidification and/or to the cooling of the spray formed product after deposition—such as residual stresses and hot cracks—and their influence on the product quality and material properties will be presented. Finally, this chapter will also discuss the effect of the atomization gas (Ar, N2 or He) on the final product quality in terms of porosity and chemical composition of steels, superalloys, and copper alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grant, P. S. (1995). Spray forming. Progress in Materials Science, 39, 497–545.

    Article  Google Scholar 

  2. Grant, P. S., et al. (2007). Metallurgical and Materials Transactions A, 38a, 1520–1529.

    Article  Google Scholar 

  3. Grant, P. S., Chang, I. T. H., & Cantor, B. (1996). Spray forming of Al/Sic metal-matrix composites. Journal of Microscopy, 177, 337–346.

    Article  Google Scholar 

  4. Schneider, A., Uhlenwinkel, V., Harig, H., & Bauckhage, K. (2004). Overspray injection in spray forming of CuSn13.5 billets. Materials Science and Engineering: A, 383, 114–121.

    Article  Google Scholar 

  5. Tang, Y. P., Tan, D. Q., Li, W. X., Pan, Z. J., Liu, L., & Hu, W. B. (2007). Preparation of Al-Fe-V-Si alloy by spray co-deposition with added its over-sprayed powders. Journal of Alloys and Compounds, 439, 103–108.

    Article  Google Scholar 

  6. Cui, C., Schulz, A., & Uhlenwinkel, V. (2014). Materials characterization and mechanical properties of graded tool steels processed by a new co-spray forming technique. Materialwissenschaft und Werkstofftechnik, 45, 652–665.

    Article  Google Scholar 

  7. Frigaard, I. A. (1995). The Dynamics of spray-formed billets. Siam Journal of Applied Mathematics, 55, 1161–1203.

    Article  Google Scholar 

  8. Mathur, P., Apelian, D., & Lawley, A. (1989). Analysis of the spray deposition process. Acta Metallurgica, 37, 429–443.

    Article  Google Scholar 

  9. Annavarapu, S., Apelian, D., & Lawley, A. (1988). Processing effects in spray casting of steel strip. Metallurgical Transactions A, 19, 3077–3086.

    Article  Google Scholar 

  10. Lavernia, E. J., & Grant, N. J. (1988). Spray deposition of metals—A review. Materials Science and Engineering, 98, 381–394.

    Article  Google Scholar 

  11. Liang, X., Earthman, J. C., & Lavernia, E. J. (1992). On the mechanism of grain formation during spray atomization and deposition. Acta Metallurgica et Materialia, 40, 3003–3016.

    Article  Google Scholar 

  12. Cantor, B., Baik, K. H., & Grant, P. S. (1997). Development of microstructure in spray formed alloys. Progress in Material Science, 42, 373–392.

    Article  Google Scholar 

  13. Mingard, K. P., Alexander, P. W., Langridge, S. J., Tomlinson, G. A., & Cantor, B. (1998). Direct measurement of sprayform temperatures and the effect of liquid fraction on microstructure. Acta Materialia, 46, 3511–3521.

    Article  Google Scholar 

  14. Mingard, K. P., Cantor, B., Palmer, I. G., Hughes, I. R., Alexander, P. W., Willis, T. C., et al. (2000). Macro-segregation in aluminium alloy sprayformed billets. Acta Materialia, 48, 2435–2449.

    Article  Google Scholar 

  15. Meyer, C., Ellendt, N., Madler, L., Muller, H. R., Reimer, F., & Uhlenwinkel, V. (2014). Spray forming of high density sheets. Materialwissenschaft und Werkstofftechnik, 45, 642–651.

    Article  Google Scholar 

  16. Jones, P. D. A., Duncan, S. R., Rayment, T., & Grant, P. S. (2003). Control of temperature profile for a spray deposition process. IEEE Transactions on Control Systems Technology, 11, 656–667.

    Article  Google Scholar 

  17. Payne, R. D., Moran, A. L., & Cammarata, R. C. (1993). Relating porosity and mechanical-properties in spray formed tubulars. Scripta Metallurgica Et Materialia, 29, 907–912.

    Article  Google Scholar 

  18. Srivastava, V. C., Schneider, A., Uhlenwinkel, V., & Bauckhage, K. (2004). Effect of porosity and reinforcement content on the electrical conductivity of spray formed 2014-Al alloy plus SiCp composites. Journal of Material Science, 39, 6821–6825.

    Article  Google Scholar 

  19. Ellendt, N. (2010). Einfluss der Prozessparameter auf Porosität und Mikrostruktur sprühkompaktierter übereutektischer Al-Mg2Si-Legierungen. Dissertation, University Bremen, Bremen.

    Google Scholar 

  20. Ellendt, N., Stelling, O., Uhlenwinkel, V., von Hehl, A., & Krug, P. (2010). Influence of spray forming process parameters on the microstructure and porosity of Mg2Si rich aluminum alloys. Materialwissenschaft und Werkstofftechnik, 41, 532–540.

    Article  Google Scholar 

  21. Uhlenwinkel, V., & Ellendt, N. (2007). Porosity in spray-formed materials. Materials Science Forum, 534–536, 429–432.

    Article  Google Scholar 

  22. Muller, H. R., Ohla, K., Zauter, R., & Ebner, M. (2004). Effect of reactive elements on porosity in spray-formed copper-alloy Billets. Materials Science and Engineering: A, 383, 78–86.

    Article  Google Scholar 

  23. Cai, W. D., & Lavernia, E. J. (1997). Modeling of porosity during spray forming. Materials Science and Engineering: A, 226, 8–12.

    Article  Google Scholar 

  24. Cai, W. D., & Lavernia, E. J. (1998). Modeling of porosity during spray forming: Part II. Effects of atomization gas chemistry and alloy compositions. Metallurgical and Materials Transactions B, 29, 1097–1106.

    Article  Google Scholar 

  25. Cai, W. D., & Lavernia, E. J. (1998). Modeling of porosity during spray forming: Part I. Effects of processing parameters. Metallurgical and Materials Transactions B, 29, 1085–1096.

    Article  Google Scholar 

  26. Doherty, R. D., Annavarapu, S., Cai, C., & Warner, L. K. (1997). Modelling based studies for control and microstructure development in spray forming. In K. Bauckhage & V. Uhlenwinkel (Eds.), SFB 372: Spruehkompaktieren, Kollowquium Band 2 (p. 45). Bremen: University Bremen

    Google Scholar 

  27. Ellendt, N., Uhlenwinkel, V., & Madler, L. (2014). High yield spray forming of small diameter tubes using pressure-gas-atomization. Materialwissenschaft und Werkstofftechnik, 45, 699–707.

    Article  Google Scholar 

  28. Cui, C., Fritsching, U., Schulz, A., Tinscher, R., Bauckhage, K., & Mayr, P. (2005). Spray forming of homogeneous 100Cr6 bearing steel billets. Journal of Materials Processing Technology, 168, 496–504.

    Article  Google Scholar 

  29. Meyer, O., Fritsching, U., & Bauckhage, K. (2003). Numerical investigation of alternative process conditions for influencing the thermal history of spray deposited billets. International Journal of Thermal Sciences, 42, 153–168.

    Article  Google Scholar 

  30. Mi, J., & Grant, P. S. (2008). Modelling the shape and thermal dynamics of Ni superalloy rings during spray forming part 1: Shape modelling—Droplet deposition, splashing and redeposition. Acta Materialia, 56, 1588–1596.

    Article  Google Scholar 

  31. Mi, J., & Grant, P. S. (2008). Modelling the shape and thermal dynamics of Ni superalloy rings during spray forming. Part 2: Thermal modelling—Heat flow and solidification. Acta Materialia, 56, 1597–1608.

    Article  Google Scholar 

  32. Cui, C. S., Fritsching, U., Schulz, A., & Li, Q. C. (2005). Mathematical modeling of spray forming process of tubular preforms—Part 2. Heat transfer. Acta Materialia, 53, 2775–2784.

    Article  Google Scholar 

  33. Ho, S., & Lavernia, E. J. (1996). Thermal residual stresses in spray atomized and deposited Ni3Al. Scripta Materialia, 34, 527–536.

    Article  Google Scholar 

  34. Ho, S., & Lavernia, E. J. (1996). The effect of ceramic reinforcement on residual stresses during spray atomization and co-deposition of metal matrix composites. Scripta Materialia, 34, 1911–1918.

    Article  Google Scholar 

  35. Ho, S., & Lavernia, E. J. (1997). The effect of heat transfer coefficient on thermal residual stresses in spray deposited materials. Scripta Materialia, 36, 283–290.

    Article  Google Scholar 

  36. Hu, H. M., Lavernia, E. J., Lee, Z. H., & White, D. R. (1999). Residual stresses in spray-formed A2 tool steel. Journal of Material Research, 14, 4521–4530.

    Article  Google Scholar 

  37. Bauckhage, K., Schulz, A., & Uhlenwinkel, V. (2003). Characteristic features and specific qualifications of the sprayforming process to be generalized. Materialwissenschaft und Werkstofftechnik, 34, 6–12.

    Article  Google Scholar 

  38. Fischer, J. E., Uhlenwinkel, V., Schroeder, R., Jordan, N., Hansmann, S., Muller, H. R. (1999). Reduction of crack probability during spray forming of billets. In EPD Congress, San Diego, USA, February 28–March 4 (pp. 117–128).

    Google Scholar 

  39. Fischer, J. F., Uhlenwinkel, V., Schroder, R., Jordan, N., Hansmann, S., & Muller, H. R. (1999). Thermal cracking in large diameter spray formed billets. International Journal of Powder Metallurgy, 35, 27–34.

    Google Scholar 

  40. Rechsteiner, A. A. (1994). Metallkundliche und metallurgische Grundlagen zur Entwicklung stickstoffreicher, zäher, hochfester austenitischer Stähle. Dissertation, ETH Zürich, Zürich.

    Google Scholar 

  41. Medovar, B., Saenko, V. Y., Grigerenko, G., Pomarin, Y. M., & Kumysh, V. (1996). Arc-slag remelting of steels and alloys (p. 36). Berlin: Cambridge International Publishing.

    Google Scholar 

  42. Schulz, A., Uhlenwinkel, V., Bertrand, C., Kohlman, R., Kulmburg, A., Oldewurtel, A., et al. (2003). Nitrogen pick-up during spray forming of high alloyed steels and its influence on microstructure and properties of the final products. Paper presented at 2nd international conference on spray deposition and melt atomization, SDMA2003, Bremen, Germany, 22–25, June 2003, pp 4–31.

    Google Scholar 

  43. Benz M. G., Sawyer T. F., Carter W. T., Zabala RJ, Dupree P. L. (1993). Nitrogen in spray formed superalloys. Second international conference on spray forming. p. 171–181.

    Google Scholar 

  44. Benz, M. G., Sawyer, T. F., Carter, W. T., Zabala, R. J., & Dupree, P. L. (1994). Nitrogen in spray formed superalloys. Powder Metallurgy, 37, 213–218.

    Article  Google Scholar 

  45. Uhlenwinkel, V., Ellendt, N., Walter, M., & Tockner, J. (2006). Spray forming and post processing of superalloy rings. Continuous Casting, 249.

    Google Scholar 

  46. Huron, E. S. (1993). Properties of spray formed superalloy rings. In Proceedings of the Second International Conference on Spray Forming, 1993 (pp. 155–164). Swansea, UK: Woodhead Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick S. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grant, P.S., Zepon, G., Ellendt, N., Uhlenwinkel, V. (2017). Microstructural Evolution in Spray Forming. In: Henein, H., Uhlenwinkel, V., Fritsching, U. (eds) Metal Sprays and Spray Deposition. Springer, Cham. https://doi.org/10.1007/978-3-319-52689-8_7

Download citation

Publish with us

Policies and ethics