Skip to main content

Spike Based Information Processing in Spiking Neural Networks

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND 2016) (ICAND 2016)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 6))

Included in the following conference series:

  • 487 Accesses

Abstract

Spiking neural networks are seen as the third generation of neural networks and the closest emulators of their biological counter parts. These networks use spikes as means of transmitting information between neurons. We study the merits and capacity of information transfer using spikes across different encoding and decoding schemes and show that spatio-temporal encoding scheme provides a very high efficiency in information transfer. We then explore learning rules based on neural dynamics that enable learning of spatio-temporal spike patterns. We explore various learning rules that can be used to learn spatio-temporal spike patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original experimental findings of Adrian E [1] were reported as the number of spikes within a time window after the stimulus onset and so it is probably more accurate to associate those measurements as count code.

References

  1. E. Adrian, The Basis of Sensation: The Actions of the Sense Organs (Lowe and Brydone Printers Ltd., London, 1928)

    Google Scholar 

  2. A. Borst, M. Egelhaaf, Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. Proc. Natl. Acad. Sci. 87(23), 9363–9367 (1990)

    Article  Google Scholar 

  3. N. Brunel, J.P. Nadal, G. Toulouse, Information capacity of a perceptron. J. Phys. A: Math. General 25(19), 5017 (1992). http://stacks.iop.org/0305-4470/25/i=19/a=015

  4. C. Carr, M. Konishi, Axonal delay lines for time measurement in the owl’s brainstem. Proc. Natl. Acad. Sci. 85(21), 8311–8315 (1988)

    Article  Google Scholar 

  5. C. Carr, M. Konishi, A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10(10), 3227–3246 (1990)

    Google Scholar 

  6. A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 1–38 (1977)

    Google Scholar 

  7. R. Florian, Tempotron-like learning with resume, in Artificial Neural Networks-ICANN 2008 (Springer, 2008), pp. 368–375

    Google Scholar 

  8. R. Florian, The chronotron: a neuron that learns to fire temporally precise spike patterns. PLoS ONE 7(8), e40,233 (2012)

    Google Scholar 

  9. E. Gardner, The space of interactions in neural network models. J. Phys. A: Math. Gen. 21(1), 257 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Gütig, H. Sompolinsky, The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9, 420–428 (2006). doi:10.1038/nn1643

    Article  Google Scholar 

  11. S. Hussain, A. Basu, M. Wang, T. Hamilton, Deltron: neuromorphic architectures for delay based learning, in 2012 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (2012), pp. 304–307. doi:10.1109/APCCAS.2012.6419032

  12. E. Izhikevich, Polychronization: computation with spikes. Neural Comput. 18(2), 245–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Johansson, I. Birznieks, First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neurosci. 7(2), 170–177 (2004)

    Article  Google Scholar 

  14. R. Kempter, W. Gerstner, J.V. Hemmen, How the threshold of a neuron determines its capacity for coincidence detection. Biosystems 48(1), 105–112 (1998)

    Article  Google Scholar 

  15. P. Knüsel, R. Wyss, P. König, P.F. Verschure, Decoding a temporal population code. Neural Comput. 16(10), 2079–2100 (2004)

    Article  MATH  Google Scholar 

  16. R. Legenstein, C. Näger, W. Maass, What can a neuron learn with spike-timing-dependent plasticity? Neural Comput. 17(11), 2337–2382 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Masquelier, R. Guyonneau, S. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE 3(1), e1377 (2008). doi:10.1371/journal.pone.0001377

    Article  Google Scholar 

  18. T. Masquelier, R. Guyonneau, S. Thorpe, Competitive STDP-based spike pattern learning. Neural Comput. 21(5), 1259–1276 (2009). doi:10.1162/neco.2008.06-08-804

    Article  MATH  Google Scholar 

  19. M. Minsky, S. Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press, Cambridge, Mass, 1969)

    MATH  Google Scholar 

  20. A. Mohemmed, S. Schliebs, S. Matsuda, N. Kasabov, Span: spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22(04) (2012)

    Google Scholar 

  21. T. Natschläger, W. Maass, H. Markram, The “liquid computer”: a novel strategy for real-time computing on time series. Spec. Issue Found. Inf. Process. TELEMATIK 8(1), 39–43 (2002)

    Google Scholar 

  22. B. Nessler, M. Pfeiffer, W. Maass, STDP enables spiking neurons to detect hidden causes of their inputs, in Advances in Neural Information Processing Systems, vol. 22, ed. by Y. Bengio, D. Schuurmans, J. Lafferty, C.I. Williams, A. Culotta (2009), pp. 1357–1365

    Google Scholar 

  23. J. O’Keefe, N. Burgess, Geometric determinants of the place fields of hippocampal neurons. Nature 381(6581), 425–428 (1996)

    Article  Google Scholar 

  24. M. Pfeiffer, M. Hartbauer, A. Lang, W. Maass, H. Römer, Probing real sensory worlds of receivers with unsupervised clustering. PLoS ONE 7(6), e37,354 (2012)

    Google Scholar 

  25. F. Ponulak, A. Kasiński, Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Rieke, Spikes: Reading the Neural Code (The MIT Press, 1997)

    Google Scholar 

  27. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958). doi:10.1037/h0042519

    Article  Google Scholar 

  28. M. van Rossum, A novel spike distance. Neural Comput. 13(4), 751–763 (2001)

    Article  MATH  Google Scholar 

  29. S. Sheik, Autonomous learning in neuromorphic systems for recognition of spatio-temporal spike patterns. Ph.D. thesis, ETH-Zürich (2013)

    Google Scholar 

  30. S. Sheik, S. Paul, C. Augustine, G. Cauwenberghs, Membrane-dependent neuromorphic learning rule for unsupervised spike pattern detection, in Biomedical Circuits and Systems Conference (BioCAS), 2016 (IEEE, 2016)

    Google Scholar 

  31. W. Singer, Time as coding space? Curr. Opin. Neurobiol. 9(2), 189–194 (1999)

    Article  Google Scholar 

  32. K. Stiefel, J. Tapson, A. van Schaik, Temporal order detection and coding in nervous systems. Neural Comput. 25(2), 510–531 (2013)

    Article  MATH  Google Scholar 

  33. S. Thorpe, A. Delorme, R.V. Rullen et al., Spike-based strategies for rapid processing. Neural Netw. 14(6–7), 715–725 (2001)

    Article  Google Scholar 

  34. J. Victor, K. Purpura, Metric-space analysis of spike trains: theory, algorithms and application. Netw.: Comput. Neural Syst. 8(2), 127–164 (1997)

    Article  MATH  Google Scholar 

  35. J. Vreeken, Spiking neural networks, an introduction. Technical Report UU-CS (2003-008), 1–5 (2003)

    Google Scholar 

  36. B. Widrow, M. Hoff, Adaptive switching circuits, in 1960 IRE WESCON convention record, Part 4 (IRE, New York, 1960), pp. 96–104. http://isl-www.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf

  37. R. Wyss, P. König, P. Verschure, Invariant representations of visual patterns in a temporal population code. Proc. Natl. Acad. Sci. 100(1), 324–329 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gert Cauwenberghs, Giacomo Indiveri, Elisabetta Chicca and Martin Coath for their invaluable feedback and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadique Sheik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sheik, S. (2017). Spike Based Information Processing in Spiking Neural Networks. In: In, V., Longhini, P., Palacios, A. (eds) Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND 2016). ICAND 2016. Lecture Notes in Networks and Systems, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-52621-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52621-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52620-1

  • Online ISBN: 978-3-319-52621-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics